Complex Analysis - 忘年 homework - solutions

Problem 1: For each of the following cases, draw the curve γ and compute the integral of f along γ :

1. $f(z)=z^{3}$ along $\gamma(\theta)=\theta e^{i \theta}$ for $\theta \in[\pi, 5 \pi]$;

The function $f(z)$ admits an antiderivative $F(z)=z^{4} / 4$ on whole \mathbb{C}. Therefore, by the fundamental theorem of calculus,

$$
\begin{aligned}
\int_{\gamma} z^{3} \mathrm{~d} z & =F(\gamma(5 \pi))-F(\gamma(\pi))=\frac{(5 \pi \exp (i 5 \pi))^{4}-(\pi \exp (i \pi))^{4}}{4} \\
& =\frac{625 \pi^{4} \exp (20 i \pi)-\pi^{4} \exp (4 i \pi)}{4}=156 \pi^{4}
\end{aligned}
$$

2. $f(z)=z \exp \left(z^{2}\right)$ along $\gamma(\theta)=e^{i \theta}$ for $\theta \in[0, \pi]$;

The function $f(z)$ admits an antiderivative $F(z)=\exp \left(z^{2}\right) / 2$ on whole \mathbb{C}. Therefore, by the fundamental theorem of calculus,

$$
\int_{\gamma} z \exp \left(z^{2}\right) \mathrm{d} z=F(\gamma(\pi))-F(\gamma(0))=\frac{\exp \left((-1)^{2}\right)-\exp \left(1^{2}\right)}{2}=0 .
$$

3. $f(z)=\frac{1}{z^{2}}$ along $\gamma(\theta)=e^{i \theta}$ for $\theta \in[0,2 \pi]$;

By definition,

$$
\begin{aligned}
\int_{\gamma} \frac{1}{z^{2}} \mathrm{~d} z & =\int_{0}^{2 \pi} \frac{1}{\gamma(\theta)^{2}} \gamma^{\prime}(\theta) \mathrm{d} \theta=\int_{0}^{2 \pi} \frac{1}{\exp (2 i \theta)} i \exp (i \theta) \mathrm{d} \theta=\int_{0}^{2 \pi} i \exp (-i \theta) \mathrm{d} \theta \\
& =\left[\frac{i}{-i} \exp (-i \theta)\right]_{0}^{2 \pi}=0
\end{aligned}
$$

4. $f(z)=\bar{z}$ along $\gamma(\theta)=e^{i \theta}$ for $\theta \in[0,2 \pi]$. Does f satisfy Cauchy theorem? Why? Same curve as in question 3.
By definition,

$$
\int_{\gamma} \bar{z} \mathrm{~d} z=\int_{0}^{2 \pi} \overline{\gamma(\theta)} \gamma^{\prime}(\theta) \mathrm{d} \theta=\int_{0}^{2 \pi} \overline{e^{i \theta}} i e^{i \theta} \mathrm{~d} \theta=\int_{0}^{2 \pi} e^{-i \theta} i e^{i \theta} \mathrm{~d} \theta=2 \pi i .
$$

It does not satisfy Cauchy's theorem. The reason is that f is not analytic.

Problem 2: We consider the following closed curve γ :

Evaluate the following integrals (justify):

1. $\int_{\gamma} \frac{1}{z} \mathrm{~d} z$;

The curve γ is homotopic in $\mathbb{C} \backslash\{0\}$ to the unit circle in clockwise direction. Therefore, $I(\gamma ; 0)=-1$. In other terms,

$$
\int_{\gamma} \frac{1}{z} \mathrm{~d} z=-2 \pi i .
$$

2. $\int_{\gamma} \frac{5}{z-2+2 i} \mathrm{~d} z$;

The curve γ is homotopic in $\mathbb{C} \backslash\{2-2 i\}$ to the unit circle centered at $2-2 i$ in anticlockwise direction. Therefore, $I(\gamma ; 2-2 i)=1$. Finally,

$$
\int_{\gamma} \frac{5}{z-2+2 i} \mathrm{~d} z=5 \times 2 \pi i=10 \pi i
$$

3. $\int_{\gamma} \exp \frac{1}{z+2} \mathrm{~d} z$;

The point -2 does not lie inside the curve γ and $\exp (1 /(z+2))$ is analytic on $\mathbb{C} \backslash\{-2\}$. Therefore, thanks to Cauchy's theorem,

$$
\int_{\gamma} \exp \frac{1}{z+2} \mathrm{~d} z=0 .
$$

4. $\int_{\gamma} \frac{z-1}{z^{2}-2 z+10} \mathrm{~d} z$;

Notice that for $z \in \mathbb{C} \backslash\{1-3 i, 1+3 i\}$, we have

$$
\frac{z-1}{z^{2}-2 z+10}=\frac{z-1}{(z-1+3 i)(z-1-3 i)}=\frac{1 / 2}{z-1-3 i}+\frac{1 / 2}{z-1+3 i}
$$

so

$$
\int_{\gamma} \frac{z-1}{z^{2}-2 z+10} \mathrm{~d} z=\int_{\gamma} \frac{1 / 2}{z-1-3 i} \mathrm{~d} z+\int_{\gamma} \frac{1 / 2}{z-1+3 i} \mathrm{~d} z
$$

The curve γ is homotopic in $\mathbb{C} \backslash\{1+3 i\}$ to the unit circle centered at $1+3 i$ in anticlockwise direction. Therefore, $I(\gamma ; 1+3 i)=1$. In the same way, the curve γ is homotopic in $\mathbb{C} \backslash\{1-3 i\}$ to the unit circle centered at $1-3 i$ in anticlockwise direction. Therefore, $I(\gamma ; 1-3 i)=1$. Finally,

$$
\int_{\gamma} \frac{z-1}{z^{2}-2 z+10} \mathrm{~d} z=\int_{\gamma} \frac{1 / 2}{z-1-3 i} \mathrm{~d} z+\int_{\gamma} \frac{1 / 2}{z-1+3 i} \mathrm{~d} z=\frac{1}{2}(2 \pi i+2 \pi i)=2 \pi i .
$$

5. $\int_{\gamma} \frac{\sin (z)}{z-1} \mathrm{~d} z$.

The curve γ is homotopic in $\mathbb{C} \backslash\{1\}$ to the unit circle centered at 1 in clockwise direction. Therefore, $I(\gamma ; 1)=-1$. Moreover, Cauchy's integral formula gives, as \sin is entire,

$$
\sin (1) I(\gamma ; 1)=\frac{1}{2 \pi i} \int_{\gamma} \frac{\sin (z)}{z-1} \mathrm{~d} z
$$

So

$$
\int_{\gamma} \frac{\sin (z)}{z-1} \mathrm{~d} z=2 \pi i \sin (1) I(\gamma ; 1)=-2 \pi \sin (1) i .
$$

Give the index of γ with respect to (justify):
6. $z_{0}=0$;

We saw in question 1 that $I(\gamma ; 0)=-1$.
7. $z_{1}=2+i$;

The point $2+i$ does not lie inside the curve γ. Therefore, $I(\gamma ; 2+i)=0$.
8. $z_{2}=2-2 i$.

We saw in question 2 that $I(\gamma ; 2-2 i)=1$.

Problem 3: The aim of this problem is to compute the following integral:

$$
I=\int_{0}^{2 \pi} \frac{\cos \theta}{2+\cos \theta} \mathrm{d} \theta
$$

1. Consider the curve $\gamma(\theta)=e^{i \theta}$ for $\theta \in[0,2 \pi]$. Compute

$$
\int_{\gamma} \frac{z^{2}+1}{z^{3}+4 z^{2}+z} \mathrm{~d} z
$$

Notice that for $z \in \mathbb{C} \backslash\{-2-\sqrt{3},-2+\sqrt{3}, 0\}$, we have

$$
\frac{z^{2}+1}{z^{3}+4 z^{2}+z}=\frac{2 / \sqrt{3}}{z+2+\sqrt{3}}-\frac{2 / \sqrt{3}}{z+2-\sqrt{3}}+\frac{1}{z}
$$

so

$$
\int_{\gamma} \frac{z^{2}+1}{z^{3}+4 z^{2}+z} \mathrm{~d} z=\int_{\gamma} \frac{2 / \sqrt{3}}{z+2+\sqrt{3}} \mathrm{~d} z-\int_{\gamma} \frac{2 / \sqrt{3}}{z+2-\sqrt{3}} \mathrm{~d} z+\int_{\gamma} \frac{1}{z} \mathrm{~d} z
$$

As $|2+\sqrt{3}|=2+\sqrt{3}>1,2+\sqrt{3}$ is not inside the unit circle and $I(\gamma ; 2+\sqrt{3})=0$. As $|-2+\sqrt{3}|=2-\sqrt{3}<1,-2+\sqrt{3}$ lies inside the unit circle and $I(\gamma ;-2+\sqrt{3})=1$ (γ turns in the anticlockwise direction). In the same way $I(\gamma ; 0)=1$. Thus, using Cauchy's integral theorem, we obtain

$$
\begin{aligned}
\int_{\gamma} \frac{z^{2}+1}{z^{3}+4 z^{2}+z} \mathrm{~d} z & =\int_{\gamma} \frac{2 / \sqrt{3}}{z+2+\sqrt{3}} \mathrm{~d} z-\int_{\gamma} \frac{2 / \sqrt{3}}{z+2-\sqrt{3}} \mathrm{~d} z+\int_{\gamma} \frac{1}{z} \mathrm{~d} z \\
& =\left(-\frac{2}{\sqrt{3}}+1\right) 2 \pi i
\end{aligned}
$$

2. Using the original definition of curve integrals, compute

$$
\int_{\gamma} \frac{z+z^{-1}}{z^{2}+4 z+1} \mathrm{~d} z
$$

as an integral of trigonometric functions.
By definition, we have

$$
\begin{aligned}
\int_{\gamma} \frac{z+z^{-1}}{z^{2}+4 z+1} \mathrm{~d} z & =\int_{0}^{2 \pi} \frac{e^{i \theta}+\left(e^{i \theta}\right)^{-1}}{\left(e^{i \theta}\right)^{2}+4 e^{i \theta}+1} i e^{i \theta} \mathrm{~d} \theta=i \int_{0}^{2 \pi} \frac{e^{i \theta}+e^{-i \theta}}{e^{i \theta}+4+e^{-i \theta}} \mathrm{~d} \theta \\
& =i \int_{0}^{2 \pi} \frac{2 \cos \theta}{2 \cos \theta+4} \mathrm{~d} \theta=I i
\end{aligned}
$$

3. Deduce the value of I.

Using the previous questions, we obtain $I i=(-2 / \sqrt{3}+1) 2 \pi i$ so

$$
I=\left(-\frac{2}{\sqrt{3}}+1\right) 2 \pi
$$

