Dihedral G-Hilb via representations of the McKay quiver

Alvaro Nolla de Celis

Abstract

For a given finite small binary dihedral group $G \subset \text{GL}(2, \mathbb{C})$ we provide an explicit description of the minimal resolution Y of the singularity \mathbb{C}^2/G. The minimal resolution Y is known to be either the moduli space of G-clusters $G\text{-Hilb}(\mathbb{C}^2)$, or the equivalent $\mathcal{M}_\theta(Q, R)$, the moduli space of θ-stable quiver representations of the McKay quiver. We use both moduli approaches to give an explicit open cover of Y, by assigning to every distinguished G-graph an open set $U_\Gamma \subset \mathcal{M}_\theta(Q, R)$, and calculating the explicit equation of U_Γ using the McKay quiver with relations (Q, R).

Key words: McKay correspondence; G-Hilbert scheme; Quiver representations.

1 Introduction.

The generalisation of the McKay correspondence [8], [12] to small finite subgroups $G \subset \text{GL}(2, \mathbb{C})$ was established after Wunram [15] introduced the notion of special representation. The so-called “special” McKay correspondence relates the G-equivariant geometry of \mathbb{C}^2 and the minimal resolution Y of the quotient \mathbb{C}^2/G, establishing a one-to-one correspondence between the irreducible components of the exceptional divisor $E \subset Y$ and the special irreducible representations. This minimal resolution Y can be viewed as two equivalent moduli spaces: by a result of Ishii [4] it is known that $Y = G\text{-Hilb}(\mathbb{C}^2)$ the G-invariant Hilbert scheme introduced by Ito and Nakamura [5], and at the same time as $Y = \mathcal{M}_\theta(Q, R)$ the moduli space of θ-stable representations of the McKay quiver.

In the same spirit as [7] in this paper we treat the problem of describing $G\text{-Hilb}(\mathbb{C}^2)$ by giving an explicit affine open cover. In [9] Nakamura introduced the notion of G-graphs, providing a nice and friendly framework to describe $G\text{-Hilb}(\mathbb{C}^2)$ for finite abelian subgroups in $\text{GL}(n, \mathbb{C})$. In this paper we consider the non-abelian analogue of a G-graph and provide an explicit method to interpret θ-stable representations of the McKay quiver from G-graphs and vice versa. By using the relations on the McKay quiver, this led us to describe explicitly an open cover $\mathcal{M}_\theta(Q, R)$ (hence for $G\text{-Hilb}(\mathbb{C}^2)$) for binary dihedral subgroups in $\text{GL}(2, \mathbb{C})$ with the minimal number of open sets. Our method also recovers the ideals defining the G-clusters in $G\text{-Hilb}(\mathbb{C}^2)$. An alternative description of an open cover for the minimal resolution Y has been discovered independently by Wemyss [13], [14] by using reconstruction algebras instead of the skew group ring.

I would like to thank M. Reid for introducing me to the McKay correspondence and M. Wemyss for many useful conversations.

2 Preliminaries.

2.1 Dihedral groups $\text{BD}_{2n}(a)$ in $\text{GL}(2, \mathbb{C})$.

Let G be a finite small binary dihedral subgroup in $\text{GL}(2, \mathbb{C})$. In terms of its action on the complex plane \mathbb{C}^2 we consider the representation of G, denoted by $\text{BD}_{2n}(a)$, generated by $\alpha = \left(\begin{smallmatrix} 0 & a \\ -a & 0 \end{smallmatrix} \right)$ and $\beta = \left(\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix} \right)$ subject to the relations:

$$(2n, a) = 1, \quad a^2 \equiv 1 \pmod{2n}, \quad \gcd(a + 1, 2n) \nmid n$$

where ε is a primitive $2n$-th root of unity. The group $\text{BD}_{2n}(a)$ has order $4n$ and it contains the maximal normal index 2 cyclic subgroup $A := \langle \alpha \rangle \triangleleft G$, which we denote by $\frac{1}{2n}(1, a)$ (note that $\beta^2 \in A$). The condition $a^2 \equiv 1 \pmod{2n}$ is equivalent to the relation $\alpha \beta = \beta \alpha^a$, and $\gcd(a + 1, 2n) \nmid n$ implies that the group is small (see [10], §3 for details).
Definition 2.1. Let \(q := \frac{2n}{(a-1,2n)} \), and \(k \) such that \(n = kq \).

The group \(BD_{2n}(a) \) has \(4k \) irreducible 1-dimensional representations \(\rho^\pm_j \) and \(\rho^-_j \) of the form

\[
\rho^\pm_j(\alpha) = \varepsilon^j, \quad \rho^-_j(\beta) = \left\{ \begin{array}{ll} \pm i & \text{if } n,j \text{ odd} \\ \pm 1 & \text{otherwise} \end{array} \right.
\]

where \(\varepsilon \) is a \(2n \)-th primitive root of unity and \(j \) is such that \(j \equiv aj \) (mod \(2n \)). The values \(r \) for which \(r \neq ar \) (mod \(2n \)) form in pairs \(n - k \) irreducible 2-dimensional representations \(V_r \) of the form

\[
V_r(\alpha) = \left(\begin{array}{cc} \varepsilon^r & 0 \\ 0 & \varepsilon^{ar} \end{array} \right), \quad V_r(\beta) = \left(\begin{array}{cc} 0 & 1 \\ (-1)^r & 0 \end{array} \right)
\]

By definition, the natural representation is \(V_1 \).

In what follows we take the notation as in [16] §10. Let \(V = V_1 \) a vector space with basis \(\{ x, y \} \) where \(G \) acts naturally. Define \(S = \text{Sym} V := \mathbb{C}[V^*] \) the polynomial ring in the variables \(x \) and \(y \). Then the action of \(G \) extends to \(S \) by \(g \cdot f(x,y) := f(g(x), g(y)) \) for \(f \in S, g \in G \).

Definition 2.2. Let \(G = BD_{2n}(a), f \in S \).

\[
f \in \rho^-_j \iff \alpha(f) = \varepsilon^j f, \beta(f) = \left\{ \begin{array}{ll} \pm if & \text{if } n,j \text{ odd} \\ \pm f & \text{otherwise} \end{array} \right.
\]

\[
(f, \beta(f)) \in V_k \iff \alpha(f, \beta(f)) = \left(\varepsilon^k f, \varepsilon^{ak} \beta(f) \right)
\]

Let \(S_\rho := \{ f \in \mathbb{C}[x,y] : f \in \rho \} \) the \(S^G \)-module of \(\rho \)-invariants. Note that these are precisely the Cohen Macaulay \(S^G \)-modules \(S_\rho = (S \otimes \rho^*)^G \) where \(G \) acts on \(S \) as above and \(G \) acts on a representation \(\rho \) by the inverse transpose.

2.2 G-Hilb and G-graphs.

Let \(G \subset \text{GL}(n, \mathbb{C}) \) be a finite subgroup.

Definition 2.3. A \(G \)-cluster is a \(G \)-invariant zero dimensional subscheme \(Z \subset \mathbb{C}^n \), defined by an ideal \(I_Z \subset \mathbb{C}[x_1, \ldots, x_n] \), such that \(O_Z = \mathbb{C}[x_1, \ldots, x_n]/I_Z \cong \mathbb{C}[G] \) the regular representation as \(G \)-modules. The \(G \)-Hilbert scheme \(\text{G-Hilb}(\mathbb{C}^n) \) is the moduli space parametrising \(G \)-clusters.

Recall that \(\mathbb{C}[G] = \bigoplus_{\rho \in Irr(G)} (\rho_i)^{\dim \rho_i} \), where every irreducible representation \(\rho_i \) appears (\(\dim \rho_i \)) times in the sum. Thus, as a vector space, \(O_Z \) has its basis (\(\dim \rho_i \)) elements in each \(\rho_i \). To describe a distinguished basis of \(O_Z \) with this property, it is convenient to use the notion of \(G \)-graph.

Definition 2.4. Let \(G \subset \text{GL}(n, \mathbb{C}) \) be a finite subgroup. A \(G \)-graph is a subset \(\Gamma \subset \mathbb{C}[x_1, \ldots, x_n] \) satisfying the following conditions:

1. It contains (\(\dim \rho \)) number of elements in each irreducible representation \(\rho \).

2. If a monomial \(x_1^{\nu_1} \cdots x_n^{\nu_n} \) is a summand of a polynomial \(P \in \Gamma \), then for every \(0 \leq \mu_j \leq \lambda_j \) the monomial \(x_1^{\mu_1} \cdots x_n^{\mu_n} \) must be a summand of some polynomial \(Q_{\mu_1, \ldots, \mu_n} \in \Gamma \).

Note that for any \(G \)-cluster \(Z \) we can choose a basis for the vector space \(O_Z \) which is a \(G \)-graph. For example, let \(f, g \in \rho \) with \(\rho \) a 1-dimensional representation and suppose \(f \notin \Gamma \) and \(g, xg \in \Gamma \). Then \(f = \alpha g \) and \(xg = \alpha(xg) \) (mod \(I \)) for some \(\alpha \in \mathbb{C} \). Since \(xg \in \Gamma \) we have \(\alpha \neq 0 \) which imply that we can choose \(f \in \Gamma \) (see [7], Chapter 2 §2.3).

For any \(G \)-graph \(\Gamma \) there exists an open set \(U_\Gamma \subset \text{G-Hilb}(\mathbb{C}^n) \) consisting of all \(G \)-clusters \(Z \) such that \(O_Z \) admits \(\Gamma \) as a basis for \(O_Z \). Therefore, given the set of all possible \(G \)-graphs \(\{ \Gamma_i \} \), their union covers \(\text{G-Hilb}(\mathbb{C}^n) \).

Example 2.5. \(\Gamma = \{ 1, x, x^2, y, xy \} \) is a \(1/4(1,3) \)-graph. For the non-abelian binary dihedral group \(D_4 = \langle \frac{1}{2}(1,3), 0, 1 \rangle \subset \text{SL}(2, \mathbb{C}) \), \(A = \{ 1, x, y, x^2 + y^2, x^2 - y^2, y^3, -x^3, x^4 - y^4 \} \) is a \(D_4 \)-graph (note that \((x, y), (y^3, -x^3) \in V_1 \)).
The representation of a G-graph Γ consist of the set of monomials which are summands of polynomials in Γ. Let I_Γ be the ideal generated by every polynomial $f \in \rho$, for some irreducible representation ρ, which is not in Γ. We say that the G-graph Γ is represented by the ideal I_Γ.

In Example 1, the representations of Γ and Λ are shown in Fig. 1. The G-graph Γ is represented by the ideal $I_\Gamma = (x^3, x^2y, y^3)$. Similarly, Λ is represented by the ideal $I_\Lambda = (xy, x^4 + y^2)$ where the elements $x^3 + y^3 \in \rho^+\zeta_2$ and $x^2 - y^2 \in \rho^+\zeta_2$ are represented by x^2 and y^2 respectively. The relation $x^3 + y^3 = 0$ identifies x^3 and y^3 in $\mathbb{C}[x,y]/I_\Lambda$.

![Figure 1: Representation of the G-graphs Γ and Λ.](image)

3 \textbf{ G-graphs for $BD_{2n}(a)$ groups.}

Let $G = BD_{2n}(a) \subset GL(2, \mathbb{C})$. The minimal resolution Y of \mathbb{C}^2/G is obtained as follows (see [5] §1.2): First act with A on \mathbb{C}^2 and consider A-$\text{Hilb}(\mathbb{C}^2)$ as the minimal resolution of \mathbb{C}^2/A. To complete the action of G act with G/A (generated by the class of β) on A-$\text{Hilb}(\mathbb{C}^2)$. The conditions $a^2 \equiv 1 \pmod{2n}$ and $\gcd(a+1, 2n) \mid n$ imply that the continued fraction $\frac{a}{n} \beta$ is symmetric with respect to the middle entry. Therefore the coordinates along the exceptional divisor $E = \bigcup_{i=1}^{2n-1} E_i \subset A$-$\text{Hilb}(\mathbb{C}^2)$ are symmetric with respect to the middle curve E_m. The action of G/A identifies the rational curves on E pairwise except in E_m where we have an involution. Thus the quotient $\tilde{Y} = A$-$\text{Hilb}(\mathbb{C}^2)/(G/A)$ has two A_1 singularities, and the blow-up of these two points gives us G-$\text{Hilb}(\mathbb{C}^2)$ by the uniqueness of minimal models of surfaces.

Let us now translate this construction into graphs. Any orbit of G/A in A-$\text{Hilb}(\mathbb{C}^2)$ consists of two A-clusters Z and $\beta(Z)$, with symmetric A-graphs Γ and $\beta(\Gamma)$ respectively. Then Γ is represented by the monomial ideal $I_\Gamma = (x^r, y^u, x^{u-r}y^{u-r})$ and $I_{\beta(\Gamma)} = (y^r, x^u, x^{u-r}y^{u-r})$, where $e_i = \frac{1}{2n}(r,s)$, $e_{i+1} = \frac{1}{2n}(u,v)$ are two consecutive lattice points in the boundary of the Newton polygon of the lattice $L := \mathbb{Z}^2 + \frac{1}{2n}(1,a) \cdot \mathbb{Z}$.

If we denote by \mathcal{Y} the corresponding G-cluster, then it is clear that $\mathbb{C}[x,y] \supset \mathcal{Y}$. Thus $I_{\mathcal{Y}} \subset I_{\mathbb{C}[x,y]}$. Note that the representation of $\tilde{\Gamma}$ in the lattice of monomials is symmetric with respect to the diagonal, and the inclusion $\tilde{\Gamma} \subset \mathcal{Y}$ is never an equality since Γ and $\beta(\Gamma)$ always share a common subset of elements $R \subset \Gamma$. The subset $\tilde{\Gamma}$ is called qG-graph.

Thus, to obtain a G-graph from $\tilde{\Gamma}$ we must add xR elements to $\tilde{\Gamma}$ preserving the representation spaces contained in R according to Definition 2.4. It is shown in [11] that this extension process from a qG-graph $\tilde{\Gamma}$ to a G-graph Γ is unique. It leads to the following theorem, which resumes the classification of G-graphs for $BD_{2n}(a)$ groups describing their defining ideals in each case.

\textbf{Theorem 3.1 ([11])}. Let $G = BD_{2n}(a)$ be a small binary dihedral group and let Γ_1 be the A-graph corresponding to the two consecutive lattice points $e_i = \frac{1}{2n}(r,s)$, $e_{i+1} = \frac{1}{2n}(u,v)$ of the Newton polygon of the lattice L. Denote by $\Gamma := \Gamma_1 \cup \beta(\Gamma_1)$ and $\Gamma_2 := \Gamma \cup \beta(\Gamma)$. Then we have the following possibilities:

- If $u < s - v$ then Γ is of type A and it is represented by the ideal $I_A = (x^u y^u, x^r y^{u-r} + (-1)^{u-r} x^{u-r} y^{u-r}, x^{r+s} + (-1)^r y^{r+s})$.

- If $u - r = s - v := m$ then Γ is of type B and
 \begin{itemize}
 \item (a) If $u < 2m$ then Γ is of type B_1 and it is represented by the ideal $I_{B_1} = (x^{r+s} + (-1)^r y^{r+s}, x^{m+s} y^{m-r} + (-1)^{m-r} x^{m-r} y^{m+s}, x^u y^m, x^m y^u)$. \\
 \item (b) If $u \geq 2m$ then Γ is of type B_2 and $I_{B_2} = (x^{2m} y^m, x^{s+m}, y^{s+m}, x^u y^m, x^m y^u)$.
 \end{itemize}
In addition, when \(u = v = q := \frac{2n}{(a - 1, 2n)} \) we have four \(G \)-graphs of types \(C^+, C^-, D^+ \) and \(D^- \).

- The \(G \)-graphs of types \(D^\pm \) are represented by the ideals \(I_{D^\pm} = (x^q \pm (i)^q y^q, x^{r-q} y^{s-r}) \).
- For \(G \)-graphs of types \(C^\pm \) we have two cases:

 (a) If \(2q < s \), and we call \(m_1 := s - q \) and \(m_2 := q - r \), they are represented by the ideals

 \[
 I_{C^+_B} = ((x^s \pm (i)^q y^q)^2, x^s y^m \pm (-1)^r i^q x^m y^s, x^m y^m \pm (-1)^m x^m y^m).
 \]

 (b) If \(2q = r + s \) then \(I_{C^-_B} = (y^m (x^2 \pm (i)^q y^q), x^m (x^2 \pm (i)^q y^q), x^s y^r, x^m y^m) \).

Remark 3.2. The list of ideals in Theorem 3.1 define in \(G\text{-Hilb}(\mathbb{C}^2) \) the intersection points of two of the exceptional curves plus the strict transform of the coordinate axis in \(\mathbb{C}^2 \).

Example 3.3. Consider the two symmetric \(\Gamma \)-graphs given by \(I_\Gamma = (x^7, y^2, x^3 y) \) and \(I_{\Gamma_\Gamma} = (y^7, x^2, x^5 y) \), with \(r = 1, s = 7, u = 2, v = 2 \). The overlap subset is \(R = \{1, x, y, xy\} \) where \(1 \in \rho_0^+, x, y \in \rho_\pm \), and \((x, y) \in V_1\). Then we must add the elements \(x^2 y - y^2 x \in \rho_0^+, x^8 - y^8 \in \rho_8 \) and the pair \((y^7, -x^7) \in V_1\). The resulting \(G \)-graph is represented by the ideal \((x^2 y^3, x^3 y^4 - y^8, -x^8 - y^8)\).

Theorem 3.4 ([11]). Let \(G = BD_{2n}(a) \) be small and let \(P \in G\text{-Hilb}(\mathbb{C}^2) \) be defined by the ideal \(I \). Then we can always choose a basis for \(\mathbb{C}[x, y]/I \) from the list \(\Gamma_A, \Gamma_B, \Gamma_C, \Gamma_C, \Gamma_D, \Gamma_D \). Moreover, if \(\Gamma_0, \Gamma_1, \ldots, \Gamma_{m-1}, \Gamma_C, \Gamma_C, \Gamma_D, \Gamma_D \) is the list of \(G \)-graphs, then

\[
U_{\Gamma_0}, U_{\Gamma_1}, \ldots, U_{\Gamma_{m-1}}, U_{\Gamma_C}, U_{\Gamma_{m-1}}, U_{\Gamma_D}, U_{\Gamma_D}
\]

form an open cover of \(G\text{-Hilb}(\mathbb{C}^2) \).

4. \(M_\theta(Q, R) \) and Orbifold McKay quiver.

Let \(G = BD_{2n}(a) \) and let \(A = \frac{1}{2}(1, a) \triangleleft G \). Denote by \(\text{Irr} G \) the set of irreducible representations of \(G \) (similarly for \(\text{Irr} A \)). For the background material on quivers refer to [1]. We consider left modules (and actions), and by a path \(pq \) we mean \(p \) followed by \(q \). Let \((Q, R) \) a quiver with relations, fix \(\mathbf{d} = (d_i)_{i \in \mathbb{Q}_a} \) the dimension vector of the representations of \((Q, R) \), and let \(\forall(I_R) \subset \mathbb{A}_N^\theta \cong \bigoplus_{\alpha \in Q_0} \text{Mat}_{d_i d_i}(\mathbb{C}) \) the representation space subject to the ideal of relations \(I_R \). For \(\theta \) generic we define \(M_\theta(Q, R) := \forall(I_R)/\theta \prod GL(d_i) \), the moduli space of \(\theta \)-stable representations of \((Q, R) \) (see [6], [3] for details). Taking \(Q \) to be the McKay quiver and a particular choice of generic \(\theta \) (see §5) it is well known that \(M_\theta(Q, R) \cong G\text{-Hilb}(\mathbb{C}^2) \).

The McKay quiver of \(G \), denoted by \(\text{McKay}(Q, \theta) \), is defined by having one vertex for every \(\rho \in \text{Irr} G \) and by the number of arrows from \(\rho \) to \(\sigma \) to be \(\text{dim}_G \text{Hom}_G(\rho, \sigma \otimes V) \). Equivalently, due to Auslander it is known that McKay\(Q, \theta \) is the underlying quiver of the algebra \(\text{End}_{\mathbb{C}[x, y]}(\bigoplus_{\rho \in \text{Irr} \theta} S_\rho) \) where \(S_\rho = (S \otimes \rho)^G \) as in 2.2 (see [16] for a proof in dimension 2).

The McKay\(Q, \theta \) can be drawn as a quiver as follows: Let \(M \cong \mathbb{Z}^2 \) be the lattice of monomials and \(M_{\text{inv}} \cong \mathbb{Z}^2 \) the sublattice of invariant monomials by \(A \). If we take \(M_\mathbb{Z} = M \otimes \mathbb{Z} \) we can consider the torus \(T := M_\mathbb{Z}/M_{\text{inv}} \). The vertices in \(\text{McKay}(A) \) are precisely \(Q_0 = M \cap T \), and the arrows between vertices are the natural multiplications by \(x \) and \(y \) in \(M \). It is easy to see that we can always choose a fundamental domain \(D \) for \(T \) to be the parallelogram with vertices \((0, 0), (2q, 0), (k+2q, k) \) where the opposite sides are identified.

Proposition 4.1. (i) The McKay quiver \(Q \) of the binary dihedral group \(BD_{2n}(a) \) is the \(\mathbb{Z}/2 \)-orbifold quotient of the McKay quiver for the Abelian subgroup \(A = \frac{1}{2}(1, a) \) (see Figure 2).

(ii) The relations \(R \) on the \(Q \) which gives the identification between \(G\text{-Hilb}(\mathbb{C}^2) \) and \(M_\theta(Q, R) \) are:

\[
\begin{align*}
 a_i b_i = 0, & f_i e_i = 0 \\
 c_i d_i = 0, & h_i g_i = 0 \\
 b_i a_i + d_i c_i = r_{i,1} u_{i,1} \\
 e_i f_i + g_i h_i = u_{i,q-2} r_{i+1,q-2} \\
 u_{i,j} r_{i+1,j} = r_{i,j+1} u_{i,j+1}
\end{align*}
\]

where we consider the subindices modulo \(k \).
Notation 4.2. The source and target for $r_{i,j}$ and $u_{i,j}$ are $r_{i,j} : S_{V_{[i-(i+1)+j]}-i} \to S_{V_{[i-(i+1)+j+1]}+i}$, and $u_{i,j} : S_{V_{[i-(i+1)+j]}+j-i} \to S_{V_{[i-(i+1)+j]+1}}$ with $i \in \{0, k-1\}$, $j \in \{1, q-2\}$, where \tilde{i} denotes $i \mod k$.

Remark 4.3. In the case $q = 2$ the relations are $a_i b_i+1 = 0$, $f_i e_i+1 = 0$, $c_i d_i+1 = 0$, $h_i g_i+1 = 0$ and $b_i a_i + d_i c_i = e_i f_i + g_i h_i$.

Remark 4.4. Our choice of modules $S_{\rho} := (S \otimes \rho^*)^G$ imply that the quiver in Figure 2 has opposite arrows as in [2]. Note that $V_1 \to \rho^+ \to V_1^*$ while $S_{V_1^*} \to S_{\rho^+} \to S_{V_1}$. Since it is just a matter of convention, the relations do not change.

![Figure 2: McKay quiver for BD_{2n}(a) groups](image)

Proof. (i) Let $\text{Irr } A = \{\rho_0, \ldots, \rho_{2n-1}\}$. The group G acts on A by conjugation, which induces an action of $G/A \cong \mathbb{Z}/2$ on A by $\beta \cdot h := \beta h^{-1} \beta$, for any $h \in A$. Therefore G/A acts on $\text{Irr } A$ by $\beta \cdot \rho_k := \rho_{k \beta}$, for $\rho_k \in \text{Irr } A$. The free orbits under this action are $\{\rho_i, \rho_{\alpha i}\}$ with $\alpha \neq i \mod 2n$, and they produce the two 1-dimensional representations ρ_i^+ and ρ_i^- in $\text{MckayQ}(G)$.

The fixed representations are contained in the left (and identified right) side of \mathcal{D}, and in the line parallel to it passing through the middle of \mathcal{D} (more precisely, $\rho_{i(1+a)}$ and $\rho_{j(1+a)+q}$ for $0 \leq i < k$ respectively). Note that $\text{MckayQ}(G)$ is now drawn on a cylinder where only the top and bottom sides are identified. The arrows of $\text{MckayQ}(A)$ going in and out of representations in the fixed locus, split into two different arrows, while for the rest we have a one-to-one correspondence between arrows in $\text{MckayQ}(A)$ and $\text{MckayQ}(G)$.

(ii) Let kQ be the path algebra, $S = \mathbb{C}[x_1, \ldots, x_r]$ and $V = V_1$ the natural representation. Tensoring with $\text{det}_V := \wedge^\tau V$ induces a permutation τ on the vertices of Q as follows: $e_i = \tau(e_j) \iff \rho_i = \rho_j \otimes \text{det}_V$. Now consider an arrow $a : e_i \to e_j$ as an element $\psi_{\alpha} \in \text{Hom}_{\mathbb{C}G}(\rho_{i}, \rho_{j} \otimes V)$. Then for any path $p = a_1 a_2 \cdots a_r$ of length r we can consider the G-module homomorphism

$$
\rho_{t(p)} \xrightarrow{\psi_p} \rho_{h(p)} \otimes V^\otimes \tau \xrightarrow{\text{id}_{h(p)} \otimes \gamma} \rho_{h(p)} \otimes \text{det}_V
$$

(1)

The ψ_p is the composition of the maps ψ_{a_1} and $\psi_{a_i} \otimes \text{det}_V$ for $i = 2, \ldots, r$, and $\gamma : V^{\otimes r} \to \bigwedge^{\tau} V$ sends $v_1 \otimes \cdots \otimes v_r \mapsto v_1 \wedge \cdots \wedge v_r$. By Schur’s Lemma the composition of maps in (1) is zero if $\tau(h(p)) \neq t(p)$, a scalar c_p otherwise. It is known by [2] that for a finite small $G \subset \text{GL}(r, \mathbb{C})$ the skew group algebra S^G is Morita equivalent to the algebra $kQ/\{\partial_q \Phi : |q| = r - 2\}$, where $\Phi := \sum_{|q|=r-2} (c_q \dim h(p)) p$ and ∂_q are derivations with respect to paths of length $|q|$. Since the θ-stable S^G-modules (θ as in §5) are precisely the G-clusters, this relations gives $M_{t}(Q, R) \cong G\text{-Hilb} (C^\tau)$.

For the groups $G = BD_{2n}(a)$ in dimension 2, tensoring with $\text{det}_V = \rho_{1+1}^+$ induces a permutation τ on $\text{MckayQ}(G)$ which translates it one step diagonally down, e.g., $\text{det}(\rho^+) = V^*$ (or the equivalently diagonally up in Figure 2, e.g. $\text{det}(S_{\rho^+}) = S_{V^*}$). Only paths of length 2 joining two vertices identified by τ appear in Φ, giving the relations R by derivations with respect to the vertices of Q.

\[\square \]
Example 4.5. Consider the group BD$_{30}(19)$ generated by $\alpha = \text{diag}(\varepsilon, \varepsilon^{19})$ with ε a primitive 30-th root of unity, and $\beta = (\begin{smallmatrix} 0 & 1 \\ \frac{1}{\varepsilon} & 0 \end{smallmatrix})$. We have $q = 5$ and $k = 3$. The continued fraction $\frac{30}{19 - 19} = \frac{30}{11} = [3, 4, 3]$ describes the lattice M_{inv}. The two consecutive invariant monomials x^3y^3 and x^4y define a fundamental domain of the lattice T, which can be translated into the parallelogram filled with numbers shown in Figure 3 (a). The diagram represents the lattice M where the bottom left corner represents the monomial 1 and the numbers denote the representation to which they belong to, e.g. the monomial 0 corresponds to monomials in M_{inv}. Opposite sides of the parallelogram are identified. The McKay quiver is completed by adding at every vertex the two arrows corresponding to the multiplication by x and y to the corresponding adjacent vertices.

Now acting by β we see that representations ρ_0, ρ_20, ρ_10 and $\rho_5, \rho_{25}, \rho_{15}$ are fixed, while the rest (in pairs) are contained in a free orbit. The McKay Q of $\text{BD}_{30}(19)$ is also shown in Figure 3 (b). Notice that top and bottom rows are identified.

$$
\begin{array}{c}
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
\end{array}
\end{array}
$$

Figure 3: McKay quivers for (a) the abelian group $\frac{1}{30}(1, 19)$ and for (b) the group $\text{BD}_{30}(19)$.

5 Explicit calculation of G-Hilb(\mathbb{C}^2)

Let $G = \text{BD}_{2n}(a)$ and (Q, R) be the McKay quiver as in 4. Denote the arrows by $a = (a, A)$, or by $a = (a')^\dagger$ depending on the dimensions of the vector spaces at the source and target of a. We consider representations of Q with dimension vector $d = (\dim \rho_i)_{i \in Q_0}$ and the generic stability condition $\theta = (1 - \sum_{i \in Q_0} \dim \rho_i, 1, \ldots, 1)$, which imply G-Hilb(\mathbb{C}^2) $= M_{\theta}(Q, R)$.

Claim 5.1. A representation of Q is stable if and only if there exist $\dim \rho_i$ linearly independent paths from the distinguished source, chosen to be $\rho_0 \in Q_0$, to every other vertex ρ_i in Q.

Indeed, a representation W is not θ-stable if $\exists W' \subset W$ proper with $\theta(W') < 0$. Since the only nonzero entry of θ corresponds to ρ_0^\dagger and the dimension vector $d(W')$ has to be strictly smaller than $d(W)$, this is equivalent to say that there are strictly less linearly independent paths from ρ_0^\dagger to ρ_i than $\dim \rho_i$, for $i \neq 0$.

By making a correspondence between elements of a G-graph and paths in Q, an open cover of $M_{\theta}(Q, R)$ is given by the ones corresponding to the G-graphs. The G-graphs predetermine the choices of linear independent paths, thus giving a covering of $M_{\theta}(Q, R)$ with the minimal number of open sets.

Theorem 5.2. Let $G = \text{BD}_{2n}(a)$ and $\Gamma = \Gamma(r, s, u, v)$ be a G-graph with corresponding open set $U_{\Gamma} \subset M_{\theta}(Q, R)$. Then,

- If Γ is of type A then $U_{\Gamma, A}$ is given by:

 $a_0, D_0, F_0 \neq 0$, and $e_i, g_i, r_{i,j}, U'_{i,j} \neq 0$ for all i, j,

 $a_i, H_i \neq 0$ for i even, and $e_i, F_i \neq 0$ for i odd.

 For $0 < i < u$ set $b_i, D_i \neq 0$ if i is even, and $B_i, d_i \neq 0$ if i is odd.

 For $i \geq u$ set $B_i, D_i \neq 0$.

- If Γ is of type B then $U_{\Gamma, B}$ is given by:

 $a_0, d_0, H_0 \neq 0$, $e_i \neq 0$, $g_i \neq 0$, $r_{i,j} \neq 0$ for all i, j,

 $a_i, b_i, D_i, H_i \neq 0$ for i even, and $B_i, c_i, d_i, F_i \neq 0$ for i odd.

If $r > 1$ also $C_0, R_{1,1}', \ldots, R_{1,r-2}' \neq 0$.

6
If \(\Gamma \) is of type \(B_1 \) then also set
\[
R_{r+1}^{1,1}, \ldots, R_{r+1,r-r-2}^{1,1}, U_{r+1}^{1,1} \neq 0 \text{ and } U_{r+1}^{1,1} \neq 0, \forall i \neq 0, r \text{ and } \forall j.
\]
For \(i = 0, r \) set \(U_0^{r,r}, \ldots, U_{0,q-2}^{r,r} \neq 0 \) and \(U_{r,r-2}^{r,r}, \ldots, U_{r,q-2}^{r,r} \neq 0. \)
Also if \(q > 2, C_r \neq 0 \) if \(r \) even, or \(A_r \neq 0 \) if \(r \) odd.

If \(\Gamma \) is of type \(B_2 \) then also set \(U_{r+1}^{1,1} \neq 0, \forall i \neq 0 \) and \(U_{r+1,0}^{0,0}, \ldots, U_{r+1,q-2}^{0,0} \neq 0. \)

1. If \(\Gamma \) is of type \(C \) then
 (a) The conditions for \(U_{1}^{r} \subset \mathcal{M}_Q(Q, R) \) are the same as those for \(\Gamma_i \) for \(i = A \) or \(B \), and the condition \(F_0 = 0 \) instead of \(H_0 = 0. \)
 (b) The open conditions for the case \(\Gamma^C \) are the same as those for \(\Gamma^C \) but swapping the conditions for \(F_i \) for \(H_i \) and vice versa.
2. If \(\Gamma \) is of type \(D \) then \(U_{1}^{r} \subset \mathcal{M}_Q(Q, R) \) is defined by:
\[
\begin{align*}
& a_0, C_0, d_0 \neq 0, \text{ and } a_i, b_i, D_i \neq 0 \text{ for } i \text{ even}, B_i, c_i, d_i \neq 0 \text{ for } i \text{ odd}, \\
& U_{i,j}^{r} \neq 0 \text{ for all } i > 0 \text{ and all } j, U_{0,r}^{r}, \ldots, U_{0,q-2}^{r} \neq 0, \\
& r_{i,j} \neq 0 \text{ for all } i, j \text{ except for } r_{i,q-i}, i \in [2, k-1], \\
& R_{r+1}^{1,1}, \ldots, R_{r+1,r-r-2}^{r+1,1} \neq 0, u_{i,q-1} \neq 0 \text{ for } i \in [2, k-1].
\end{align*}
\]

If \(\Gamma \) is a \(G \)-graph of type \(D^+ \) then we also set
\[
E_0, H_0, G_0, E_1, f_1, g_1, H_1 \neq 0.
\]
If \(i \) is even then \(E_i, g_i, F_i \neq 0 \), if \(i \) is odd then \(e_i, G_i, H_i \neq 0. \)

If \(\Gamma \) is a \(G \)-graph of type \(D^- \) we set
\[
E_0, F_0, g_1, c_1, F_1, G_1, h_1 \neq 0.
\]
If \(i \) is even then \(e_i, G_i, H_i \neq 0 \), if \(i \) is odd then \(e_i, G_i, F_i \neq 0 \text{ with } i \in [0, k-1]. \)

Proof. An open set in \(\mathcal{M}_Q(Q, R) \) is obtained by making open conditions in the parameter space of representations \(\mathcal{V}(I_R) \subset \mathbb{A}^N. \) We can change basis at every vertex to chose 1 as basis for every 1-dimensional vertex, and (1,0) and (0,1) for every 2-dimensional. Thus, by 5.1 the element 1 \(\in \mathbb{A}^+ \) generates the whole representation with this basis. For instance, we always choose \(a_0 = (1,0). \)

Given any \(G \)-graph \(\Gamma \), the corresponding open set \(U_{1}^{r} \subset \mathcal{M}_Q(Q, R) \) is obtained by taking the open conditions according to the elements of \(\Gamma \). This is done by considering simultaneously the McKay quiver of \(G \) to be given (see 4) by the \(S \)-modules \(S_p \) as vertices, and the irreducible maps between them to be the arrows. See Figure 4 for the case \(n \) even, where the segment is repeated throughout the quiver. When \(n \) is odd replace \(e_i \) by \(r_i \) and \(f_i \) by \(y_i \). We can change basis at every vertex to chose 1 as basis for every 1-dimensional vertex, and (1,0) and (0,1) for every 2-dimensional. Thus, by 5.1 the element 1 \(\in \mathbb{A}^+ \) generates the whole representation with this basis. For instance, we always choose \(a_0 = (1,0). \)

Given any \(G \)-graph \(\Gamma \), the corresponding open set \(U_{1}^{r} \subset \mathcal{M}_Q(Q, R) \) is obtained by taking the open conditions according to the elements of \(\Gamma \). This is done by considering simultaneously the McKay quiver of \(G \) to be given (see 4) by the \(S \)-modules \(S_p \) as vertices, and the irreducible maps between them to be the arrows. See Figure 4 for the case \(n \) even, where the segment is repeated throughout the quiver. When \(n \) is odd replace \(e_i \) by \(r_i \) and \(f_i \) by \(y_i \). We can change basis at every vertex to chose 1 as basis for every 1-dimensional vertex, and (1,0) and (0,1) for every 2-dimensional. Thus, by 5.1 the element 1 \(\in \mathbb{A}^+ \) generates the whole representation with this basis. For instance, we always choose \(a_0 = (1,0). \)

Irreducible maps send 1 \(\in S_{p} \) once to every other \(S_{p} \) and twice to every other \(S_{p} \) linearly independently. Denote the polynomials obtained by \(f_{p} \) and \((g_{r}, g_{r}'), (h_{r}, h_{r}') \) respectively. In this way, for any stable representation all modules \(S_p \) have assigned basis polynomials. Therefore, if we take the open conditions such that the basis elements generated from 1 \(\in S_{p} \) form the \(G \)-graph \(\Gamma \), we obtain the desired open set \(U_{1}^{r} \subset \mathcal{M}_Q(Q, R). \)

If \(f \in S_{p} \) and \(f \neq f_{p} \) (i.e. \(f \notin \Gamma \)), then there exists \(c \in \mathbb{C} \) such that \(f = cf_{p} \).
(f, f') ∈ S_v). Therefore U_T parametrizes every G-cluster with Γ as G-graph, so the union of U_T covers $\mathcal{M}_G(Q, R)$. We prove the result case by case. It is worth mention that because $G = BD_{2n}(a)$ we have that $\langle k, q \rangle = 1$ (see [10] §3.3.1).

Case A: We start to generate the representation from $r = 0$ and $a_0 = (1, 0)$. We choose to obtain the basis element $(1, 0)$ at every 2-dimensional vertex with horizontal arrows taking $r_i, j = \left(\begin{array}{c} 1 \\ r_i, j \end{array} \right)$ for all i, j. The open conditions needed are $r_i, j \neq 0 \forall i, j, a_i \neq 0$ for all i even, $c_i \neq 0$ and c odd. Similarly, we choose to reach $(0, 1)$ at every 2-dimensional vertex with vertical arrows taking $u_i, j = \left(\begin{array}{c} 0 \\ u_i, j \end{array} \right)$ for all i, j. We can achieve such a map with a map that has $d_1 = b_2 = d_3 = \ldots$ until $d_{u-1} = 1$ if u is even, or $b_{u-1} = 1$ if u is odd. The condition $x^u y^u \not\in \mathcal{G}_A$ is given by $B_u = 1$ if u is even, or $B_u = 1$ if u is odd. Finally, from row u to the top row the choices are always $B_i, D_i \neq 0, i \neq 0$ and $D_0 \neq 0$.

Case B: In this case $x^u y^u, x^y \not\in \mathcal{G}_B$, which implies that $x^y \in \mathcal{G}_B$ for $i < u$. This explains the choices at the left hand side of the quiver, while on the right hand side remain the same as before. Since $x^u y^u, x^y \in \mathcal{V}_r$, the conditions $x^u y^u, x^y \not\in \mathcal{G}_B$ are expressed with choices $C_0, R_{1,1}, R_{1,2}, \ldots, R_{u-2} \neq 0$. If $r \leq k$ we have a G-graph of type B_1, otherwise we have a type B_2.

Case C: If the G-graph $\Gamma(r, s, u, v)$ is of type B, then the open conditions are made at the special representation \mathcal{V}_r. The difference between the C^+ and C^- is given by $\langle + \rangle^2 \not\in \mathcal{G}_C^+$ and $\langle - \rangle^2 \not\in \mathcal{G}_C^-$ which are the choices on the vertical arrows in the right side of the quiver.

Case D: In this case $\langle + \rangle \not\in \mathcal{G}_D^+$, or $\langle - \rangle \not\in \mathcal{G}_D^-$. The open condition is made at the special representation ρ_q^+ (or at ρ_q^- respectively). For instance, in the D^+ case we do not allow a path of length q starting from ρ_q^+ and ending at ρ_q^-, i.e., $E_1 = 1$.

Example 5.3. Let $G = BD_{12}(7)$ with $q = 2, k = 3$. The G-graphs is shown in Figure 5. The representation spaces of U_{Γ_A} and $U_{\Gamma_{C^-}}$ are given in Figure 6. The open choices are shown red colour and the red arrows represent the choices of the basis $(1, 0), (0, 1)$ at each 2-dimensional vertex.

In all of the cases, after doing the open choices and using the relations we obtain the whole representation space in terms of three parameters subject to a single relation, thus obtaining a hypersurface in \mathbb{C}^3. See Figure 6 where in the case U_{Γ_A} we have $C_0 = c_0 d_1$, $a_1 = G_1 d_1 = 1$, and in the case $U_{\Gamma_{C^-}}$ we...
have \(a_1 = G_1 - D_1, c_1 = -b_2D_1, H_0 = b_2 - 1 \). The equations of the open cover of \(BD_{12}(7)\)-Hilb(\(\mathbb{C}^2\)) are:

\[
\begin{align*}
U_A : & \quad c_0d_1 = (c_0d_1^2 + 1)G_1, \\
U_C^- : & \quad b_2D_1 = -(b_2 - 1)G_1, \\
U_{D^+} : & \quad c_1f_0 = -(c_1^2f_0 - 1)D_1, \\
U_{C^+} : & \quad b_2D_1 = -(b_2 - 1)E_1, \\
U_{D^-} : & \quad g_1h_0 = -(g_1h_0^2 - 1)D_1.
\end{align*}
\]

Using the quiver in Figure 4 we can calculate the basis polynomials in every irreducible representation (see case \(\Gamma_D^-\) in Table 1), and we can deduce the gluings between every open piece. For instance, between \(U_{\Gamma_A}\) and \(U_{\Gamma_{C^-}}\) we have \((b_2, D_1, G_1) \mapsto (1 - c_0d_1^2, d_1^{-1}, G_1)\), i.e. they cover a \(-2\)-curve. As a result we obtain the following expected dual graph of the exceptional divisor in \(G\)-Hilb(\(\mathbb{C}^2\)):

![Diagram](image)

Figure 6: Open sets \(U_{\Gamma_A}\) and \(U_{\Gamma_{C^-}} \subset M_\theta(Q, R)\) for \(BD_{12}(7)\).

<table>
<thead>
<tr>
<th>(\mathcal{E})</th>
<th>(\rho_0^0)</th>
<th>(\mathcal{F})</th>
<th>(\rho_0^+)</th>
<th>(\mathcal{V})</th>
<th>(\rho_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_0^-)</td>
<td>(2xy(+)^2)</td>
<td>(\rho_4^-)</td>
<td>(2xy(+)^3)</td>
<td>(V_1)</td>
<td>((0, 1) = (xy^2, y^2))</td>
</tr>
<tr>
<td>(\rho_4^-)</td>
<td>(2xy(+)^3)</td>
<td>(\rho_4^-)</td>
<td>(2xy(+)^4)</td>
<td>(V_1)</td>
<td>((0, 1) = (xy^2, y^3))</td>
</tr>
<tr>
<td>(\rho_2^-)</td>
<td>(2xy(+)^2)</td>
<td>(\rho_8^-)</td>
<td>(2xy)</td>
<td>(V_5)</td>
<td>((1, 0) = (xy^4, y^2))</td>
</tr>
<tr>
<td>(\rho_8^-)</td>
<td>(2xy(+)^4)</td>
<td>(\rho_{10}^-)</td>
<td>(2xy(+)^5)</td>
<td>(V_5)</td>
<td>((1, 0) = (xy^4, y^3))</td>
</tr>
</tbody>
</table>

Table 1: Basis elements of the \(G\)-graph \(\Gamma_{D^-}(1, 7, 2, 2)\).

References

Alvaro Nolla de Celis
Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.

email address: alnolla@gmail.com