2020 Alternative Report of Comprehensive Examination

(From 9am to 5pm, April 16, 2020)

Notes

- (1) For all the sheats of your report, write the problem number (i.e. one of $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, $\boxed{4}$) on the upper left, and write your student number and name on the upper right.
- (2) Your ability to describe your mathematical demonstration is also evaluated. **Don't write answers** on your submitting sheats directly, but do so after making drafts. (Don't submit the drafts.)
- (3) The purpose of the report is to confirm the correctness of your understanding. When you prove something, avoid using the word "obvious" etc., and write the essential point appropriately.
- (4) Even if you cannot solve (1) (resp. (2)), you may solve (2) (resp. (3)) by using the conclusion of (1) (resp. (2)).
- (5) There are 4 problems, each of which is marked out of 3 points. Thus your total score will be out of 12 points.

2020 Alternative Report of Comprehensive Examination

1 Consider the function

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} \cos \frac{1}{x} & (x \neq 0), \\ 0 & (x = 0) \end{cases}$$

defined on \mathbb{R}^2 . Answer the following questions.

- (1) Prove that the function f(x,y) is partially differentiable at the origin. Moreover, calculate the partial differential coefficients $f_x(0,0)$ and $f_y(0,0)$.
- (2) Prove that for the function f(x, y) there exist constants A, B such that

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)-Ax-By}{\sqrt{x^2+y^2}}=0.$$

- (3) Calculate $f_x(t,t)$ for $t \neq 0$. Using it, prove that the partial derivative $f_x(x,y)$ with respect to x is not continuous at the origin.
- 2 Answer the following questions.
- (1) Let $\{f_n(x)\}_{n=0}^{\infty}$ be a sequence of real-valued functions on an interval I. Assume $f_n(x)$ are uniformly continuous on I and $\{f_n(x)\}_{n=0}^{\infty}$ converges uniformly to a function f(x) on I. Prove that f(x) is also uniformly continuous on I.
- (2) Let a, b, c be real numbers. Give a necessary and sufficient condition for the function $g(x) = ax^2 + bx + c$ to be uniformly continuous on \mathbb{R} .
- (3) Let p, q, r be real numbers. Let $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$, $\{c_n\}_{n=0}^{\infty}$ be sequences of real numbers. Consider the functions

$$h(x) = px^{2} + qx + r,$$

 $h_{n}(x) = a_{n}x^{2} + b_{n}x + c_{n} \ (n \ge 0).$

Give a necessary and sufficient condition for the sequence $\{h_n(x)\}_{n=0}^{\infty}$ to converge uniformly to h(x) on \mathbb{R} .

- [3] For a \mathbb{C} -linear map $f: V \to W$, define the rank of f by rank $f = \dim_{\mathbb{C}}(\operatorname{Im} f)$. For an $m \times n$ matrix A over \mathbb{C} , define the linear map $f_A: \mathbb{C}^n \to \mathbb{C}^m$ by $f_A(x) = Ax$, and the rank of A by rank $A = \operatorname{rank}(f_A)$. Under these definitions, answer the following questions.
- (1) Let A be an $m \times n$ matrix, P an $m \times m$ invertible matrix and Q an $n \times n$ invertible matrix over \mathbb{C} . Prove that $\operatorname{rank}(PAQ) = \operatorname{rank} A$.
- (2) Assume an $m \times n$ matrix A over \mathbb{C} becomes

$$\begin{pmatrix} E_r & O \\ O & O \end{pmatrix}$$

by elementary row and column operations, where E_r is the $r \times r$ identity matrix and Ois a zero matrix. Prove that rank A = r.

- (3) Let A be an $m \times n$ matrix over \mathbb{C} . Prove that $\operatorname{rank}({}^{t}A) = \operatorname{rank} A$.
- Let V be a finite-dimensional vector space over a field K. Let $f: V \to V$ be a linear map. Answer the following questions.
- (1) Note that there are ascending and descending chains

$$\operatorname{Ker}(f) \subseteq \operatorname{Ker}(f^2) \subseteq \cdots \subseteq V,$$

 $\cdots \subseteq \operatorname{Im}(f^2) \subseteq \operatorname{Im}(f) \subseteq V$

of subspaces of V, where f^i denotes the ith iterate of f. Prove that there exists a
positive integer t such that

$$Ker(f^t) = Ker(f^{t+i}),$$

 $Im(f^t) = Im(f^{t+i})$

for all positive integers i.

- (2) For t as in (1), set $V_0 = \text{Ker}(f^t)$ and $V_1 = \text{Im}(f^t)$. Prove that $V = V_0 \oplus V_1$ holds.
- (3) For V_i (i = 0, 1) as in (2) one has $f(V_i) \subseteq V_i$, and hence one can define the linear map $f|_{V_i}: V_i \to V_i$. Prove that $f|_{V_0}$ is nilpotent and $f|_{V_1}$ is an isomorphism.