Entrance Examination for Master's Program Graduate School of Mathematics Nagoya University 2024 Admission

Part 2 of 2

July 30, 2023, 9:00 \sim 12:00

Note:

- 1. Please do not turn pages until told to do so.
- 2. The problem sheet consists of the cover page and 4 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
- 3. There are a total of 4 problems labeled 1, 2, 3, and 4, respectively. Please answer all 4 problems in English.
- 4. The answering sheet consists of 4 pages. Please confirm the number of pages, and please do not remove the staple.
- 5. Please write the answers to problems 1, 2, 3, and 4 on pages
 1, 2, 3, and 4 of the answering sheet, respectively.
- 6. Please write name and seat number in the space provided on each of the 4 pages in the answering sheet.
- 7. The back side of the 4 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
- 8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
- 9. After the exam has ended, please hand in the 4-page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

Notation:

The symbols \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

) Let $M_n(\mathbb{C})$ be the complex linear space consisting of all $n \times n$ complex matrices. For $A \in M_n(\mathbb{C})$, let

$$Z(A) = \{ X \in M_n(\mathbb{C}) \mid AX = XA \}.$$

(1) Suppose that $A, B, P \in M_n(\mathbb{C})$ with P being invertible. Show that, if $B = P^{-1}AP$, then

$$\dim Z(A) = \dim Z(B).$$

- (2) Let $A \in M_n(\mathbb{C})$. For an eigenvalue α of A, let $W_\alpha = \ker(A \alpha I)^n$ be the generalized eigenspace of A with respect to α . Note that I is the $n \times n$ identity matrix. For any $X \in Z(A)$ and any $v \in W_\alpha$, show that $Xv \in W_\alpha$.
- (3) Define the $n \times n$ Jordan block J whose diagonal entries are α by

$$J = (J_{ik}), \qquad J_{ik} = \begin{cases} \alpha & (k = i, \ 1 \le i \le n), \\ 1 & (k = i + 1, \ 1 \le i \le n - 1), \\ 0 & (\text{otherwise}). \end{cases}$$

Let $J = \alpha$ when n = 1. For any $\alpha \in \mathbb{C}$, show that dim Z(J) = n.

(4) In a Jordan canonical form of $A \in M_n(\mathbb{C})$, suppose that, for each eigenvalue of A, exactly one Jordan block corresponding to that eigenvalue appears. Show that dim Z(A) = n.

- 2 Let f be a real-valued continuous function defined on the interval $[0, \infty)$ and suppose that f is improperly integrable over $[0, \infty)$.
 - (1) For any $\delta > 0$, show that the sequence $\left\{ \int_{n\delta}^{(n+1)\delta} f(x) dx \right\}_{n=0}^{\infty}$ converges to 0 as $n \to \infty$.
 - (2) Show that there exists a sequence $\{x_n\}_{n=0}^{\infty}$ of positive numbers with $\lim_{n\to\infty} x_n = \infty$ such that

$$\lim_{n \to \infty} f(x_n) = 0$$

(3) If in addition f is uniformly continuous on $[0, \infty)$, show that

$$\lim_{x \to \infty} f(x) = 0.$$

Consider the complex function f given by

3

$$f(z) = \frac{\log z}{z^2 + 4}.$$

Here, let D be the domain obtained from the complex plane \mathbb{C} by removing the origin and the imaginary axis in the lower half plane. Then $\log z$ is a single-valued function defined on D if we take the branch of $\log z$ on D so that $\log z$ is real-valued when restricted to the positive real axis. For $R > 2 > \varepsilon > 0$, let

$$C_{1} = \{x \mid \varepsilon \leq x \leq R\},\$$

$$C_{2} = \{Re^{i\theta} \mid 0 \leq \theta \leq \pi\},\$$

$$C_{3} = \{-y \mid \varepsilon \leq y \leq R\},\$$

$$C_{4} = \{\varepsilon e^{i\theta} \mid 0 \leq \theta \leq \pi\},\$$

and assume that the closed curve $C = C_1 \cup C_2 \cup C_3 \cup C_4$ in D is oriented so that the interior of C is on the left as traversing along C.

- (1) For $z = re^{i\theta}$ $(r > 0, -\frac{\pi}{2} < \theta < \frac{3\pi}{2})$, express log z in terms of r and θ .
- (2) Find the value of the complex integral $\int_C f(z)dz$.

(3) Show that
$$\lim_{R \to \infty} \int_{C_2} f(z) dz = 0$$
 and $\lim_{\varepsilon \to 0} \int_{C_4} f(z) dz = 0$.

(4) Find the value of the real integral $\int_0^\infty \frac{\log x}{x^2 + 4} dx$.

3

(July 30, 2023)

Answer the following questions.

4

- (1) Show that a closed set A in a compact topological space X is a compact set.
- (2) Show that a compact set B in a Hausdorff topological space Y is a closed set.
- (3) Let X, Y be topological spaces. Show that, if f is a continuous map from X to Y and A is a compact set in X, then the image f(A) is a compact set in Y.
- (4) Show that, if f is a continuous bijection from a compact topological space X to a Hausdorff topological space Y, then f is a homeomorphism.