Entrance Examination for Master's Program Graduate School of Mathematics Nagoya University 2023 Admission

Part 2 of 2

February 5, 2023, 9:00 ~12:00

Note:

- 1. Please do not turn pages until told to do so.
- 2. The problem sheet consists of the cover page and 4 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
- 3. There are a total of 4 problems labeled **(1)**, **(2)**, **(3)**, and **(4)**, respectively. Please **answer all 4 problems**.
- 4. The answering sheet consists of 4 pages. Please confirm the number of pages, and please do not remove the staple.
- 5. Please write the answers to problems 1, 2, 3, and 4 on pages
 1, 2, 3, and 4 of the answering sheet, respectively.
- 6. Please write name and seat number in the space provided on each of the 4 pages in the answering sheet.
- 7. The back side of the 4 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
- 8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
- 9. After the exam has ended, please hand in the 4-page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

Notation:

The symbols \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

- **1** Let X and Y be real matrices that are antisymmetric (i.e., ${}^{t}X = -X$ and ${}^{t}Y = -Y$, where ${}^{t}X$ and ${}^{t}Y$ denote the transposes of X and Y). Answer the following questions.
 - (1) Show that $(XY YX)^2$ is a real symmetric matrix.
 - (2) Show that $tr(XY YX)^4 \ge 0$.
 - (3) Show that X and Y commute if and only if equality in (2) holds.

2 Using a sequence of real numbers $\{a_k\}$ satisfying $\sum_{k=1}^{\infty} |a_k| < \infty$, we define the function

u(x,t) on $\mathbb{R} \times [0,\infty)$ as follows.

$$u(x,t) = \sum_{k=1}^{\infty} a_k(\sin kx)e^{-k^2t} \qquad (x \in \mathbb{R}, t \ge 0)$$

Answer the following questions.

- (1) Show that u(x,t) is a continuous function on $\mathbb{R} \times [0,\infty)$.
- (2) Show that u(x,t) converges uniformly on \mathbb{R} to u(x,0) when $t \to 0$.
- (3) Show that u(x,t) is of class C^1 on $\mathbb{R} \times (0,\infty)$.

3 For $0 < \alpha < 2$, define the complex function f as $f(z) = \frac{z^{\alpha-1}}{1+z^2}$. Answer the following questions.

- (1) For $z = re^{i\theta}$ $(r > 0, -\frac{\pi}{2} < \theta < \frac{3\pi}{2})$, express $z^{\alpha-1}$ using r and θ .
- (2) Let D be the domain obtained by removing from the complex plane C the origin and the imaginary axis in the lower-half plane. Based on (1), we consider f as a single-valued function defined on D. For 0 < ε < 1 < R, we define the closed curve

$$C(\varepsilon, R) = C_R \cup [-R, -\varepsilon] \cup C_{\varepsilon} \cup [\varepsilon, R],$$

where

$$C_{\rho} = \{ z = \rho e^{i\theta} \mid 0 \le \theta \le \pi \} \quad (\rho = \varepsilon, R),$$
$$[-R, -\varepsilon] = \{ z = r e^{i\pi} \mid \varepsilon \le r \le R \},$$
$$[\varepsilon, R] = \{ z = r \mid \varepsilon \le r \le R \}.$$

We define an integral path by orienting $C(\varepsilon, R)$ using the counter-clockwise orientation. Calculate the value of the complex integral

$$\int_{C(\varepsilon,R)} f(z) \, dz$$

(3) Show that
$$\int_{[-R,-\varepsilon]} f(z) dz = -e^{i\pi\alpha} \int_{[\varepsilon,R]} f(z) dz$$
.

(4) Calculate the value of the definite integral

$$\int_0^\infty \frac{x^{\alpha-1}}{1+x^2} \, dx.$$

(continue on next page)

- **4** Consider a topological space X. For any subset S of X, we denote its closure by \overline{S} . We equip the Cartesian product $X \times X = \{(x, y) \mid x, y \in X\}$ with the product topology, i.e., $W \subset X \times X$ is an open set if for any $(x, y) \in W$ there exist open sets U, V of X such that $x \in U, y \in V$ and $U \times V \subset W$ hold. Here we consider the following 3 conditions about the topological space X:
 - (i) For any two distinct points $x, y \in X$, there exist open sets U, V of X such that $x \in U, y \in V$ and $U \cap V = \emptyset$ hold.
 - (ii) For any $x \in X$, $\{x\} = \bigcap \{\overline{U} \mid U \text{ is an open set containing } x\}$ holds.
 - (iii) The set $\Delta = \{(x, y) \in X \times X \mid x = y\}$ is a closed set of $X \times X$.

Answer the following questions.

- (1) Show that Conditions (i) and (ii) are equivalent.
- (2) Show that Conditions (i) and (iii) are equivalent.
- (3) Consider continuous maps f, g : X → X. Show that when X satisfies Condition (i), the set A = {x ∈ X | f(x) = g(x)} is a closed set of X.