Entrance Examination for Master's Program Graduate School of Mathematics Nagoya University 2023 Admission

Part 1 of 2

February 4, 2023, 9:00 \sim 12:00

Note:

1.	Please	do	not	turn	pages	until	told	to	do	so.
----	--------	----	-----	------	-------	-------	------	----	----	-----

- 2. The problem sheet consists of the cover page and 4 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
- 3. There are a total of 4 problems labeled $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$, respectively. Please answer all 4 problems.
- 4. The answering sheet consists of 4 pages. Please **confirm the number of pages**, and please **do not remove the staple**.
- 5. Please write the answers to problems $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ on pages $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ of the answering sheet, respectively.
- 6. Please write name and seat number in the space provided on each of the 4 pages in the answering sheet.
- 7. The back side of the 4 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
- 8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
- 9. After the exam has ended, please hand in the 4-page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

Notation:

The symbols \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

1 For real numbers a, b, define the matrix A and the vector b as follows.

$$A = \begin{pmatrix} a & -a & 0 & 0 \\ a & 0 & 2-a & -1 \\ -a & a & a-2 & 1 \\ 2a & -2a & -a+2 & -1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} -1 \\ 2 \\ b \\ -1 \end{pmatrix}$$

Answer the following questions about the system of linear equations

$$Ax = b$$

in
$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{R}^4$$
.

- (1) Find the rank of the matrix A.
- (2) Find necessary and sufficient condition(s) on a, b so that this system of linear equations has a solution.
- (3) When a, b satisfy the condition(s) from (2), find the general form of solutions of this system of linear equations.

2 Consider the matrix A defined using a real number t as follows.

$$A = \begin{pmatrix} t+3 & 0 & 0 & 3\\ 0 & -1 & 0 & 0\\ -t-4 & t-2 & -1 & -3\\ -t-1 & 0 & 0 & -1 \end{pmatrix}$$

Answer the following questions.

- (1) Find the eigenvalues of A.
- (2) Give the Jordan normal form of A. If necessary consider several cases depending on the value of t. You do not need to find an invertible matrix P such that $P^{-1}AP$ is in Jordan normal form.

- Answer the following questions about the functions $g(x,y) = x^2 + xy + y^2 1$ and f(x,y) = xy on \mathbb{R}^2 .
 - (1) Draw the graph of g(x, y) = 0.
 - (2) At a point (x, y) = (a, b) other than the origin (x, y) = (0, 0), find all $\lambda \in \mathbb{R}$ such that $\lambda \nabla g = \nabla f$ holds, where

$$\nabla g(x,y) = \begin{pmatrix} g_x(x,y) \\ g_y(x,y) \end{pmatrix}, \qquad \nabla f(x,y) = \begin{pmatrix} f_x(x,y) \\ f_y(x,y) \end{pmatrix}.$$

(3) Find the minimum and maximum values of f under the condition g(x,y) = 0, and find all the points that have these values.

- (4) Answer the following questions.
 - (1) Let u = u(x, y) be a real-valued function of class C^2 defined on \mathbb{R}^2 . Let θ be a real number. For an arbitrary point (x, y) of \mathbb{R}^2 , express the limit

$$\lim_{t\to 0} \frac{u(x+t\cos\theta,y+t\sin\theta)+u(x-t\cos\theta,y-t\sin\theta)-2u(x,y)}{t^2}$$

using θ and the second partial derivatives of u.

(2) Define the function f = f(x, y, z) on \mathbb{R}^3 as follows.

$$f(x,y,z) = (x^2 + y^2 + z^2)^{\frac{1}{2}} \left\{ 1 + (x^2 + y^2 + z^2)^{\frac{1}{2}} + z \right\}$$

For a parameter $\alpha > 0$, consider the improper integral

$$\int_{x^2+y^2+z^2>1} f(x,y,z)^{-\alpha} dxdydz.$$

Using a change to polar coordinates

$$x = r \sin \theta \cos \varphi$$
, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$ $(r \ge 0, 0 \le \theta \le \pi, 0 \le \varphi \le 2\pi)$,

rewrite this integral as an integral with respect to (r, θ, φ) , and give necessary and sufficient condition(s) on $\alpha > 0$ so that it converges.

 $(February 4, 2023) \tag{end}$