## Entrance Examination for Master's Program Graduate School of Mathematics Nagoya University 2023 Admission

## Part 2 of 2

July 31, 2022, 9:00  $\sim$ 12:00

## Note:

- 1. Please do not turn pages until told to do so.
- 2. The problem sheet consists of the cover page and 4 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
- 3. There are a total of 4 problems labeled  $\boxed{1}$ ,  $\boxed{2}$ ,  $\boxed{3}$ , and  $\boxed{4}$ , respectively. Please answer all 4 problems.
- 4. The answering sheet consists of 4 pages. Please **confirm the number of pages**, and please **do not remove the staple**.
- 5. Please write the answers to problems  $\boxed{1}$ ,  $\boxed{2}$ ,  $\boxed{3}$ , and  $\boxed{4}$  on pages  $\boxed{1}$ ,  $\boxed{2}$ ,  $\boxed{3}$ , and  $\boxed{4}$  of the answering sheet, respectively.
- 6. Please write name and seat number in the space provided on each of the 4 pages in the answering sheet.
- 7. The back side of the 4 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
- 8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
- 9. After the exam has ended, please hand in the 4-page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

## **Notation:**

The symbols  $\mathbb{Z}$ ,  $\mathbb{Q}$ ,  $\mathbb{R}$ , and  $\mathbb{C}$  denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

- Let V be a finite dimensional real vector space and let  $\langle \boldsymbol{v}, \boldsymbol{w} \rangle$   $(\boldsymbol{v}, \boldsymbol{w} \in V)$  denote the inner product in V. A linear map  $p:V\to V$  is said to be a projection if  $p^2=p$ . Moreover, such p is said to be an orthogonal projection if Ker p and Im p are orthogonal.
  - (1) Suppose that  $p: V \to V$  is an orthogonal projection. Show that

$$\langle p(\boldsymbol{v}), \boldsymbol{v} - p(\boldsymbol{v}) \rangle = 0$$

for every  $\boldsymbol{v} \in V$ .

- (2) Suppose that  $p: V \to V$  is an orthogonal projection. Show that  $|p(\boldsymbol{v})| \leq |\boldsymbol{v}|$  for every  $\boldsymbol{v} \in V$ . Here,  $|\boldsymbol{x}| := \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}$ .
- (3) Assume that p is a projection and  $|p(\mathbf{v})| \leq |\mathbf{v}|$  for every  $\mathbf{v} \in V$ . Show that

$$|\boldsymbol{u}|^2 + 2t\langle \boldsymbol{u}, \boldsymbol{w} \rangle \ge 0$$

for every  $\boldsymbol{u} \in \operatorname{Ker} p$ ,  $\boldsymbol{w} \in \operatorname{Im} p$  and every  $t \in \mathbb{R}$ .

(4) Under the assumptions in (3), show that p is an orthogonal projection.

- Let f and g be continuous real-valued functions on the interval  $[0, \infty)$  and suppose that both  $f^2$  and  $g^2$  are improperly integrable on  $[0, \infty)$ .
  - (1) Let m > 0. By integrating the function  $(|f(x)||g(y)| |f(y)||g(x)|)^2$  of two variables x and y on  $[0, m] \times [0, m]$ , show that

$$\left(\int_{0}^{m} |f(x)g(x)| \, dx\right)^{2} \le \int_{0}^{m} f(x)^{2} \, dx \int_{0}^{m} g(x)^{2} \, dx$$

holds.

- (2) Show that  $u(x) = \int_0^\infty f(x+y)g(y) \, dy$  is a bounded function on  $[0,\infty)$ .
- (3) For an arbitrary positive integer m, consider the function

$$u_m(x) = \int_0^m f(x+y)g(y) \, dy$$

- on  $[0, \infty)$ . For any real positive number L, show that  $u_m(x)$  is uniformly continuous on [0, L].
- (4) Show that the sequence  $\{u_m\}$  of functions in (3) converges uniformly on  $[0, \infty)$  to the function u in (2).

- $[\ 3\ ]$  Answer the following questions.
  - (1) For a real number  $\theta$ , let  $z = e^{i\theta}$ . Express the function

$$f(\theta) = \frac{1}{33 - 40\cos\theta + 8\cos 2\theta}$$

as a function of z.

(2) Compute the value of the integral  $\int_0^{2\pi} f(\theta) d\theta$ .

- $oxed{4}$  Let  $f: \mathbb{R} \to \mathbb{R}$  be a continuous map.
  - (1) Suppose that f satisfies the condition
    - (\*) For every bounded subset K of  $\mathbb{R}$ , its preimage  $f^{-1}(K)$  is a bounded set. Show that f is a closed map, that is, for every closed set F its image f(F) is a closed set.
  - (2) Show that f satisfies the condition (\*) above if and only if  $\lim_{x\to\pm\infty}|f(x)|=\infty$ .

(July 31, 2022) (end)