Entrance Examination for Master's Program Graduate School of Mathematics Nagoya University 2022 Admission

Part 1 of 2

February 5, 2022, 9:00 \sim 12:00

Note:

	1.	Please	do	not	turn	pages	until	told	to	do	so.
--	----	--------	----	-----	------	-------	-------	------	----	----	-----

- 2. The problem sheet consists of the cover page and 4 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
- 3. There are a total of 4 problems labeled 1, 2, 3, and 4, respectively. Please answer all 4 problems.
- 4. The answering sheet consists of 4 pages. Please **confirm the number of pages**, and please **do not remove the staple**.
- 5. Please write the answers to problems $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ on pages $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ of the answering sheet, respectively.
- 6. Please write name and seat number in the space provided on each of the 4 pages in the answering sheet.
- 7. The back side of the 4 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
- 8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
- 9. After the exam has ended, please hand in the 4-page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

Notation:

The symbols \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

 $oxed{1}$ For a real number c, let V be the subspace of \mathbb{R}^4 generated by the three vectors

$$\begin{pmatrix} c+2 \\ c-2 \\ c \\ c-2 \end{pmatrix}, \quad \begin{pmatrix} c+1 \\ c-2 \\ c-1 \\ c-1 \end{pmatrix}, \quad \begin{pmatrix} c \\ c \\ c-2 \\ c \end{pmatrix},$$

and W be the subspace generated by the two vectors

$$\begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix}.$$

- (1) Find the dimension of V.
- (2) Find the dimension of V + W.
- (3) Find the dimension of $V \cap W$.

[2] Consider the following matrix A, where t is a real number.

$$A = \begin{pmatrix} t^2 + 1 & 0 & -1 \\ 0 & -t^2 - \frac{1}{2} & 0 \\ 1 & 0 & -t^2 - 1 \end{pmatrix}$$

- (1) Find the rank of A.
- (2) Find the eigenvalues of A.
- (3) Find necessary and sufficient conditions on t so that A is diagonalizable.

 $\left[\, 3 \,
ight]$ Answer the following questions about the function

$$f(x,y) = \sin x + \sin y - \sin(x+y) \quad (-\pi \le x < \pi, -\pi \le y < \pi).$$

(1) Find a polynomial P(x, y) in x and y of degree 3 such that

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y) - P(x,y)}{(x^2 + y^2)^{\frac{3}{2}}} = 0.$$

(2) Find the extrema of f(x,y) and the values x, y achieving the extrema.

- ig(4ig) Answer the following questions.
 - (1) Let a be a real number. Consider the domain D inside \mathbb{R}^3 defined as

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, 1 - x^2 - y^2 \le z\}.$$

Give necessary and sufficient conditions on a so that the improper integral

$$\iiint_D \frac{1}{z^a} \, dx \, dy \, dz$$

converges, and give the value of the integral in this case.

(2) Compute the value of

$$\iint_{D} |x - y| \, dx dy,$$

where $D = \{(x, y) \in \mathbb{R}^2 | \sqrt{x} + \sqrt{y} \le 1, x \ge 0, y \ge 0\}.$