Entrance Examination for Master's Program Graduate School of Mathematics Nagoya University 2022 Admission

Part 2 of 2

August 1, 2021, 9:00 ~12:00

Note:

- 1. Please do not turn pages until told to do so.
- 2. The problem sheet consists of the cover page and 4 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
- 3. There are a total of 4 problems labeled $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$, respectively. Please answer all 4 problems.
- 4. The answering sheet consists of 4 pages. Please **confirm the number of pages**, and please **do not remove the staple**.
- 5. Please write the answers to problems $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ on pages $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ of the answering sheet, respectively.
- 6. Please write name and application number in the space provided on each of the 4 pages in the answering sheet.
- 7. The back side of the 4 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
- 8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
- 9. After the exam has ended, please hand in the 4-page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

Notation:

The symbols \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

- Let A be an $n \times n$ complex matrix satisfying the condition $P^2 = P$, where $P = A^*A$ and $A^* = {}^t\bar{A}$ (the transpose of the matrix in which each entry is the complex conjugate of the corresponding entry of A). Define the standard Hermitian inner product of two elements $\boldsymbol{x} = {}^t(x_1, \ldots, x_n), \ \boldsymbol{y} = {}^t(y_1, \ldots, y_n)$ in \mathbb{C}^n by $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_{i=1}^n x_i \bar{y}_i$ and let $|\boldsymbol{x}| = \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}$.
 - (1) For two elements $\boldsymbol{x}, \boldsymbol{y}$ in \mathbb{C}^n , show that $\langle A\boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{x}, A^*\boldsymbol{y} \rangle$. Also, show that $\langle P\boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{x}, P\boldsymbol{y} \rangle$.
 - (2) Let I be the $n \times n$ identity matrix. For any $\mathbf{x} \in \text{Im}(P)$ and $\mathbf{y} \in \text{Im}(I-P)$, show that $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. Also, show that $\mathbb{C}^n = \text{Im}(P) \oplus \text{Im}(I-P)$. Here, for an $n \times n$ complex matrix B, the set Im(B) is the image of the linear map $f_B : \mathbb{C}^n \to \mathbb{C}^n$ $(f_B(\mathbf{x}) = B\mathbf{x})$ determined by B.
 - (3) For $\mathbf{x} \in \text{Im}(P)$, show that $|A\mathbf{x}| = |\mathbf{x}|$. Also, for $\mathbf{x} \in \text{Im}(I P)$, show that $A\mathbf{x} = \mathbf{0}$.
 - (4) Show that any eigenvalue λ of A satisfies $|\lambda| \leq 1$.

(August 1, 2021)

 $\overline{f 2}$

Let n be a positive integer and define the function g_n on $\mathbb R$ by

$$g_n(x) = \begin{cases} n & (x \in [0, 1/n]) \\ 0 & (x \notin [0, 1/n]). \end{cases}$$

Also, suppose that f is a continuous function on \mathbb{R} and define the function f_n on \mathbb{R} by

$$f_n(x) = \int_{-\infty}^{\infty} f(t) g_n(x - t) dt.$$

- (1) Show that the function f_n is continuous for each n.
- (2) Show that $\lim_{n\to\infty} f_n(x) = f(x)$ for each $x \in \mathbb{R}$.
- (3) Determine whether the convergence verified in (2) is uniform or not. If it is, then give a proof. Otherwise, find a counterexample and show that it is indeed a counterexample.

- Consider the quadratic polynomial $f(z) = z^2 2pz + 1$ and quartic polynomial $g(z) = z^4 z^3 + z^2 z + 1$, where p is a real constant.
 - (1) Express the remainder when g(z) is divided by f(z) in terms of p.
 - (2) When $p = \cos \frac{\pi}{5}$, show that a complex number α satisfying $f(\alpha) = 0$ also satisfies $g(\alpha) = 0$.
 - (3) Calculate the value of $\cos \frac{\pi}{5}$.
 - (4) When $p = \cos \frac{\pi}{5}$, express the value of the improper integral

$$\int_{-\infty}^{\infty} \frac{f(t)}{g(t)} dt$$

in terms of p without using the imaginary unit i.

- Consider a map $f: X \to Y$, where X and Y are topological spaces. The map f is said to be continuous if, for any open set O in Y, its preimage $f^{-1}(O)$ is an open set in X. The map f is said to be closed if, for any closed set E in X, its image f(E) is a closed set in Y. Furthermore, for subsets $A \subset X$ and $B \subset Y$, the set \overline{A} is the closure of A in X while \overline{B} is the closure of B in Y.
 - (1) Show that f is closed if and only if $\overline{f(A)} \subset f(\overline{A})$ for any subset $A \subset X$.
 - (2) Show that f is continuous if and only if $f^{-1}(F)$ is a closed set in X for any closed set F in Y.
 - (3) Show that f is continuous if and only if $f(\overline{A}) \subset \overline{f(A)}$ for any subset $A \subset X$.

(August 1, 2021) (end)