Entrance Examination for Master's Program Graduate School of Mathematics Nagoya University 2021 Admission

Part 2 of 2

February 7, 2021, $10:00 \sim 12:00$

Note:

1.	Please	do	not	turn	pages	until	told	to	do	so.
----	--------	----	-----	------	-------	-------	------	----	----	-----

- 2. The problem sheet consists of the cover page and 3 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
- 3. There are a total of 3 problems labeled **1**, **2**, and **3** respectively. Please answer all 3 problems.
- 4. The answering sheet consists of 3 single-sided pages. Please **confirm the** number of pages, and please do not remove the staple.
- 5. Please write the answers to problems $\boxed{1}$, $\boxed{2}$, and $\boxed{3}$ on pages $\boxed{1}$, $\boxed{2}$, and $\boxed{3}$ of the answering sheet, respectively.
- 6. Please write name and application number in the space provided on each of the 3 pages in the answering sheet.
- 7. The back side of the 3 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
- 8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
- 9. After the exam has ended, please hand in the 3 page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

Notation:

The symbols \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

1 Consider an $n \times n$ real matrix A such that $A^2 = {}^tA$, where tA denotes the transpose of

A. For any elements
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ of \mathbb{C}^n , let $\langle x, y \rangle$ denote the standard

Hermitian inner product $\sum_{j=1}^{n} x_j \overline{y_j}$. Answer the following questions.

- (1) Let v be an eigenvector of A corresponding to an eigenvalue α . Show that $\alpha^2 = \overline{\alpha}$ by considering $\langle v, Av \rangle$.
- (2) Show that eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

Below we consider n=3 and assume that A satisfies the following conditions:

" $A^2 = {}^t A$ holds, A is invertible and is not the identity matrix."

- (3) Show that at least one of the eigenvalues of A is real, and calculate all the eigenvalues of A. Also show that A is diagonalizable by a unitary matrix.
- (4) Give an example of a matrix A satisfying the conditions.

Define I = [0, 1]. A function φ defined on I is said to be of bounded variation on I if there exists M > 0 such that

$$\sum_{j=0}^{n-1} |\varphi(t_{j+1}) - \varphi(t_j)| \le M$$

holds for any partition

$$0 = t_0 < t_1 < \dots < t_n = 1$$

of I. Answer the following questions.

- (1) Consider a function f that is differentiable on an open interval including I and such that its derivative f' is bounded on I. Show that f is of bounded variation on I.
- (2) Determine whether the following functions are of bounded variation on *I* or not. Explain the reasons.

(i)
$$g(x) = \begin{cases} x^2 \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$
 (ii) $h(x) = \begin{cases} x \cos \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$

- [3] Answer the following questions.
 - (1) Consider a real-valued function $f: U \to \mathbb{R}$ over an open set $U \not = \emptyset$ of \mathbb{R}^n that is of class C^1 and such that its partial derivatives $\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}$ are identically zero on U. Show that f is a constant function if U satisfies the following condition:
 - " any two points of U can be connected by a curve of class C^1 inside U."
 - (2) A real-valued function $f: X \to \mathbb{R}$ over a topological space $X \not = \emptyset$ is a locally constant function if for any $p \in X$ there exists an open set V containing p such that f is a constant function on V. Show that if X is connected, then a locally constant function on X is a constant function on X.