Entrance Examination for Master's Program Graduate School of Mathematics Nagoya University 2021 Admission

Part 1 of 2

February 6, 2021, 10:00 ~12:00

Note:

- 1. Please do not turn pages until told to do so.
- 2. The problem sheet consists of the cover page and 3 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
- 3. There are a total of 3 problems labeled 1, 2, and 3 respectively. Please answer all 3 problems.
- 4. The answering sheet consists of 3 single-sided pages. Please **confirm the** number of pages, and please do not remove the staple.
- 5. Please write the answers to problems $\boxed{1}$, $\boxed{2}$, and $\boxed{3}$ on pages $\boxed{1}$, $\boxed{2}$, and $\boxed{3}$ of the answering sheet, respectively.
- 6. Please write name and application number in the space provided on each of the 3 pages in the answering sheet.
- 7. The back side of the 3 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
- 8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
- 9. After the exam has ended, please hand in the 3 page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

Notation:

The symbols \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

 $oxed{1}$ Answer the following questions about the following 3×3 matrix where a and b are real numbers.

$$A = \begin{pmatrix} -b & b+1 & a \\ -2b & 2b+1 & a \\ -b-1 & b+1 & a+1 \end{pmatrix}$$

(1) Find all the eigenvalues of A for which there exists an eigenvector of the form

$$\begin{pmatrix} 1\\1\\t \end{pmatrix}$$
 for some real number t .

- (2) Find all the eigenvalues of A.
- (3) For the case b = 1, calculate the dimension of the eigenspace corresponding to the eigenvalue 1.
- (4) Find necessary and sufficient conditions on a, b so that A is not diagonalizable.

- (2) Answer the following questions.
 - (1) Prove that the improper integral

$$\int_{1}^{\infty} \frac{\cos x}{x} \, dx$$

converges.

- (2) Find all the extremal values of the 2-variable function $f(x,y) = x^2 y^4 (x+y)^4$ defined on \mathbb{R}^2 .
- (3) Let a > 0. Find the value of the following integral.

$$\int_0^a \left(\int_y^{\sqrt{2a^2 - y^2}} e^{x^2 + y^2} \, dx \right) \, dy.$$

 $[\,3\,]\,$ Consider the improper integral

$$I = \int_{-\infty}^{\infty} \frac{1}{x^6 + 1} \, dx.$$

Answer the following questions.

- (1) Compute the poles of the complex function $f(z) = \frac{1}{z^6 + 1}$ in the upper half plane $\{z = x + iy \in \mathbb{C}; x, y \in \mathbb{R}, y > 0\}$. Also compute the residues of f at these poles.
- (2) Compute the value of I using the residue theorem.