Entrance Examination for Master's Program Graduate School of Mathematics Nagoya University 2019 Admission

Part 2 of 2

February 6, 2019, 13:00 \sim 16:00

Note:

- 1. Please do not turn pages until told to do so.
- 2. The problem sheet consists of the cover page and 4 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
- 3. There are a total of 4 problems labeled $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$, respectively. Please answer all 4 problems.
- 4. The answering sheet consists of 4 single-sided pages. Please **confirm the** number of pages, and please do not remove the staple.
- 5. Please write the answers to problems $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ on pages $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ of the answering sheet, respectively.
- 6. Please write name and application number in the space provided on each of the 4 pages in the answering sheet.
- 7. The back side of the 4 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
- 8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
- 9. After the exam has ended, please hand in the 4 page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

Notation:

The symbols \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

- $oxed{1}$ Define the convergence of a vector in the complex vector space \mathbb{C}^k by the convergence of each component of the vector.
 - (1) Let A be a 3×3 Jordan block $\begin{pmatrix} \alpha & 1 & 0 \\ 0 & \alpha & 1 \\ 0 & 0 & \alpha \end{pmatrix}$ $(\alpha \in \mathbb{C})$. Find A^n $(n \geq 2)$.
 - (2) Consider A given in (1). Find the necessary and sufficient condition on α so that the sequence $\{A^n\mathbf{x}\}_{n=0}^{\infty}$ of vectors in \mathbb{C}^3 converges for an arbitrary $\mathbf{x} \in \mathbb{C}^3$.
 - (3) Let B be a $k \times k$ complex matrix. Find the necessary and sufficient condition on B so that the sequence $\{B^n\mathbf{x}\}_{n=0}^{\infty}$ of vectors in \mathbb{C}^k converges for an arbitrary $\mathbf{x} \in \mathbb{C}^k$.

- Let $\langle \cdot, \cdot \rangle$ denote the standard inner product in \mathbb{R}^n $(n \geq 1)$. An $n \times n$ real symmetric matrix $A = (a_{ij})$ is said to be positive definite if $\langle A\mathbf{x}, \mathbf{x} \rangle \geq 0$ for an arbitrary $\mathbf{x} \in \mathbb{R}^n$ and $\langle A\mathbf{x}, \mathbf{x} \rangle = 0$ implies that $\mathbf{x} = \mathbf{0}$. Also, an $n \times n$ real symmetric matrix $A = (a_{ij})$ is positive semidefinite if $\langle A\mathbf{x}, \mathbf{x} \rangle \geq 0$ for an arbitrary $\mathbf{x} \in \mathbb{R}^n$. Suppose that each of $A = (a_{ij})$ and $B = (b_{ij})$ is an $n \times n$ positive definite real symmetric matrix and $A B = (a_{ij} b_{ij})$ is positive semidefinite.
 - (1) For a positive definite real symmetric matrix C, let $V(C) = \{ \mathbf{x} \in \mathbb{R}^n \mid \langle C\mathbf{x}, \mathbf{x} \rangle < 1 \}$. Show that

$$V(A) \subset V(B)$$
.

(2) Express the volume

$$\int_{V(A)} 1 \, dx_1 dx_2 \cdots dx_n$$

of V(A) in terms of the volume ω_n of the unit ball $\{\mathbf{x} \in \mathbb{R}^n \mid \langle \mathbf{x}, \mathbf{x} \rangle < 1\}$ in \mathbb{R}^n and $\det(A)$. There is no need for calculating the value of ω_n .

(3) Show that $det(A) \ge det(B)$.

- 3
- (1) Show that $z = n \in \mathbb{Z}$ is a pole of the meromorphic function

$$\pi \cot(\pi z) = \pi \frac{\cos(\pi z)}{\sin(\pi z)}$$

on \mathbb{C} . Show also that, for each n, the order and residue at the pole z=n are both 1.

- (2) For a positive integer n, let C_n be the circumference of the square in the complex plane with its four corners at the points $\pm (n + \frac{1}{2}) \pm (n + \frac{1}{2})i$. Show that there exists a constant M so that, for each positive integer n, $|\cot(\pi z)| \leq M$ on C_n .
- (3) For the function f(z) given by

$$f(z) = \frac{1}{1+z^2},$$

show that

$$\lim_{n \to +\infty} \int_{C_n} f(z) \pi \cot(\pi z) dz = 0$$

holds, where C_n is that considered in (2) oriented counterclockwise.

(4) Compute the limit

$$\lim_{n \to \infty} \sum_{k=-n}^{n} \frac{1}{1+k^2}.$$

- (1) Using sequences of points, define that a subset A of a metric space (X, d) is a closed set.
- (2) Let (X, d) be a compact metric space and consider the monotone decreasing sequence

$$X \supset A_1 \supset A_2 \supset \cdots \supset A_n \supset A_{n+1} \supset \cdots$$

of nonempty closed subsets. Show that $\bigcap_{n=1}^{\infty} A_n$ is nonempty.

(3) If (X,d) is a metric space that is not compact, does the same conclusion as in (2) hold? If it does, prove it. Otherwise, give a counterexample and show that it is indeed a counterexample.

 $(February 6, 2019) \tag{end}$