Entrance Examination for the Ph. D. Program Graduate School of Mathematics Nagoya University 2016 Admission

Part 2 of 2

Thursday, February 4, 2016, 13:00 p.m.~16:00 p.m.

Note:

- 1. Please do not turn pages until told to do so.
- 2. The problem sheet consists of the cover page and 4 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
- 3. There are a total of 4 problems labeled $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$, respectively. Please answer all 4 problems.
- 4. The answering sheet consists of 4 single-sided pages. Please **confirm the** number of pages, and please do not remove the staple.
- 5. Please write the answers to problems $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ on pages $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ of the answering sheet, respectively.
- 6. Please write name and application number in the space provided on each of the 4 pages in the answering sheet.
- 7. The back side of the 4 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
- 8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
- 9. After the exam has ended, please hand in the 4 page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

Notation:

The symbols \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

- Let A be an $n \times n$ matrix with complex entries. Suppose that A has 0 as an eigenvalue with multiplicity $m \ge 1$.
 - (1) Let k be the number of the Jordan blocks with eigenvalue 0 in a Jordan canonical form of A. Show that $k \leq m$.
 - (2) Show that the following inequality holds.

$$n - m \le \operatorname{rank} A \le n - 1.$$

(3) Show that, if rank $A = \operatorname{rank} A^2$, then rank A = n - m.

2 Consider the function

$$f(x) = \frac{1}{x^2}$$

defined on the open interval I = (0, 1) in \mathbb{R} .

the following condition is satisfied.

- (1) Give an ε - δ proof of the fact that the function f(x) is continuous at an arbitrary point $a \in I$.
- (2) Determine whether or not f(x) is uniformly continuous on I. Here, a function f(x) defined on an interval $I \subset \mathbb{R}$ is uniformly continuous if

For any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$x, y \in I, |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

(February 4, 2016) (over)

 $\left(\begin{array}{c} \mathbf{3} \end{array}\right)$ Let $a\in\mathbb{R}$ and consider the complex function

$$f(z) = \frac{e^{az}}{z^2 + 1}.$$

For a real number R > 100, let

$$C_R = \{z = 1 + Re^{i\theta} \in \mathbb{C} \mid \frac{\pi}{2} \le \theta \le \frac{3\pi}{2}\},$$

$$L_R = \{ z = 1 + iy \in \mathbb{C} \mid -R \le y \le R \}.$$

Furthermore, give an orientation to each of C_R and L_R so that the closed curve $C_R \cup L_R$ is traversed counterclockwise.

- (1) Obtain the value of the complex integral $\int_{C_R \cup L_R} f(z) dz$.
- (2) Assuming a>0, obtain the values of $\lim_{R\to\infty}\int_{C_R}f(z)dz$ and $\lim_{R\to\infty}\int_{L_R}f(z)dz$.
- (3) Assuming $a \leq 0$, obtain the value of $\lim_{R \to \infty} \int_{L_R} f(z) dz$.

- Let (X, d) be a metric space. For $a, b \in X$, let d(a, b) denote the distance between a and b. For the following questions, you may assume the completeness of \mathbb{R} .
 - (1) For two sequences $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ of points in X, show the following inequality.

$$|d(a_m, b_m) - d(a_n, b_n)| \le d(a_m, a_n) + d(b_m, b_n).$$

- (2) Suppose that $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are both Cauchy sequences of points in X. Show that, if $(c_n)_{n=1}^{\infty}$ is the sequence in \mathbb{R} given by $c_n = d(a_n, b_n)$, then $(c_n)_{n=1}^{\infty}$ converges.
- (3) Let Y be the set of all Cauchy sequences of points in X. If we define a relation \sim on Y by

$$(a_n)_{n=1}^{\infty} \sim (b_n)_{n=1}^{\infty} \quad \Longleftrightarrow \quad \lim_{n \to \infty} d(a_n, b_n) = 0,$$

then \sim is an equivalence relation on Y.

For the quotient set $\overline{Y}=Y/\sim$ of Y under the equivalence relation \sim , define a map $\overline{d}:\overline{Y}\times\overline{Y}\to\mathbb{R}$ by

$$\overline{d}(\overline{(a_n)_{n=1}^{\infty}}, \overline{(b_n)_{n=1}^{\infty}}) = \lim_{n \to \infty} d(a_n, b_n).$$

Show that \overline{d} is well-defined.