## Entrance Examination for the Ph. D. Program Graduate School of Mathematics Nagoya University 2016 Admission

## Part 1 of 2

Thursday, February 4, 2016, 9:00 a.m.~12:00 noon

## Note:

- 1. Please do not turn pages until told to do so.
- 2. The problem sheet consists of the cover page and 4 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
- 3. There are a total of 4 problems labeled  $\boxed{1}$ ,  $\boxed{2}$ ,  $\boxed{3}$ , and  $\boxed{4}$ , respectively. Please answer all 4 problems.
- 4. The answering sheet consists of 4 single-sided pages. Please **confirm the** number of pages, and please do not remove the staple.
- 5. Please write the answers to problems [1], [2], [3], and [4] on pages [1], [2], [3], and [4] of the answering sheet, respectively.
- 6. Please write name and application number in the space provided on each of the 4 pages in the answering sheet.
- 7. The back side of the 4 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
- 8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
- 9. After the exam has ended, please hand in the 4 page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

## **Notation:**

The symbols  $\mathbb{Z}$ ,  $\mathbb{Q}$ ,  $\mathbb{R}$ , and  $\mathbb{C}$  denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

 $\left[egin{array}{c} \mathbf{1} \end{array}
ight]$  Let  $W_1$  and  $W_2$  be the subspaces of the vector space  $\mathbb{R}^4$  over  $\mathbb{R}$  given by

$$W_1 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{R}^4 \mid \begin{array}{c} x_1 - 3x_2 - x_3 + 2x_4 = 0, \\ 2x_1 - 3x_2 - 2x_3 + x_4 = 0 \end{array} \right\},$$

$$W_2 = \left\{ t \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ -1 \\ 1 \end{pmatrix} \middle| t, s \in \mathbb{R} \right\}.$$

- (1) Obtain a basis for  $W_1$ .
- (2) Obtain a basis for the sum  $W_1 + W_2$ .
- (3) Find a tuple a, b, c, d, e, f, g, h of real numbers for which the solution space of the linear system

$$\begin{cases} ax_1 + bx_2 + cx_3 + dx_4 = 0, \\ ex_1 + fx_2 + gx_3 + hx_4 = 0 \end{cases}$$

is exactly  $W_2$ .

Let V be a finite-dimensional vector space over  $\mathbb{R}$  with an inner product  $(\ ,\ )$ . A linear map  $f:V\to V$  is said to be symmetric if f satisfies

$$(f(v), w) = (v, f(w)), \quad v, w \in V.$$

- (1) Suppose that a linear map  $f: V \to V$  is symmetric and has the inverse  $f^{-1}$ . Show that  $f^{-1}$  is also symmetric. (There is no need for showing that  $f^{-1}$  is a linear map.)
- (2) Let  $e_1, \ldots, e_n$  be an orthonormal basis of V and consider a linear map  $f: V \to V$ . Show that, if f is symmetric, then the representation matrix A of f with respect to the basis  $e_1, \ldots, e_n$  is a symmetric matrix.
- (3) For an arbitrary linear map  $f:V\to V$ , show that there is a unique linear map  $g:V\to V$  such that

$$(f(v), w) = (v, g(w)), \quad v, w \in V.$$

(February 4, 2016) (over)

igg(3igg) For the real function

$$f(x) = \frac{1}{1 - x - x^2},$$

let  $\sum_{n=0}^{\infty} a_n x^n$  be the Taylor expansion of f(x) at x=0.

- (1) Find  $a_0, a_1$ .
- (2) For each n = 0, 1, 2, ..., find  $a_n$ .
- (3) Find the radius of convergence of the power series  $\sum_{n=0}^{\infty} a_n x^n$ .

 $ig(oldsymbol{4}ig)$  Let S be the surface in  $\mathbb{R}^3$  given by

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + (y - z)^2 + z^2 = 1\}.$$

- (1) Show that S is a bounded closed set.
- (2) Let  $F(x, y, z, \lambda)$  be the real function of four variables given by

$$F(x, y, z, \lambda) = 2yz + \lambda \{x^2 + (y - z)^2 + z^2 - 1\}.$$

Also, let  $F_x$ ,  $F_y$ ,  $F_z$  be the partial derivatives of F with respect to x, y, z, respectively. By taking  $\lambda$  as a constant, the equation

$$F_x(x, y, z, \lambda) = F_y(x, y, z, \lambda) = F_z(x, y, z, \lambda) = 0$$

can be seen as a system of linear equations involving x, y, z. Find all real numbers  $\lambda$  for which the above equation has a solution other than the trivial solution (x, y, z) = (0, 0, 0).

(3) Find all points (x, y, z) on S at which the function f(x, y, z) = 2yz takes its maximum. In addition, find the maximum value of f.