Entrance Examination for the Ph. D. Program Graduate School of Mathematics
 Nagoya University
 2015 Admission

Part 2 of 2
Thursday, February 5, 2015, 13:00 p.m. $\sim 16: 00$ p.m.

Note:

1. Please do not turn pages until told to do so.
2. The problem sheet consists of the cover page and 4 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
3. There are a total of 4 problems labeled $\sqrt[1]{ }, 2, \sqrt{2}$, and 4 , respectively. Please answer all 4 problems.
4. The answering sheet consists of 4 single-sided pages. Please confirm the number of pages, and please do not remove the staple.
5. Please write the answers to problems (1, 2, 3 , and 4 on pages (1), 2, 3 , and 4 of the answering sheet, respectively.
6. Please write name and application number in the space provided on each of the 4 pages in the answering sheet.
7. The back side of the 4 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
9. After the exam has ended, please hand in the 4 page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

Notation:

The symbols $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

1 Let V be a vectorspace over the field K and W a subvectorspace of V. Define the equivalence relation \sim by

$$
v_{1} \sim v_{2} \quad \Longleftrightarrow \quad v_{1}-v_{2} \in W
$$

on V, and let V / W be the quotient set with respect to the equivalence relation \sim. If we denote the element of V / W represented by $v \in V$ by \bar{v}, and define addition and scalar multiplication in V / W by

$$
\overline{v_{1}}+\overline{v_{2}}=\overline{v_{1}+v_{2}}, \quad c \bar{v}=\overline{c v}, \quad\left(v_{1}, v_{2}, v \in V, c \in K\right),
$$

then V / W is a vector space over K.
(1) Verify that the addition and scalar multiplication of V / W is well-defined (i.e., does not depend on the choice of the representative).
(2) Suppose $W \neq V$ and $W \neq\{0\}$, where 0 denotes the zero vector. Show that for the basis v_{1}, \ldots, v_{k} of W there exits $v_{k+1}, \ldots, v_{n} \in V$ such that v_{1}, \ldots, v_{n} is a basis of V.
(3) Use (2) to show that $\overline{v_{k+1}}, \ldots, \overline{v_{n}}$ is a basis of V / W.

2 Let $f\left(x_{1}, x_{2}, x_{3}\right)$ be a C^{1}-function which is defined in a neighborhood of $S^{2}=$ $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$ in \mathbb{R}^{3}. Define the function $g\left(u_{1}, u_{2}, u_{3}\right)$ on \mathbb{R}^{3} minus the origin by

$$
g\left(u_{1}, u_{2}, u_{3}\right)=f\left(\frac{u_{1}}{\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}}, \frac{u_{2}}{\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}}, \frac{u_{3}}{\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}}\right) .
$$

Let $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ be a fixed point of S^{2}.
(1) Show that the following inequality holds:

$$
\begin{equation*}
\sum_{j=1}^{3}\left(\frac{\partial g}{\partial u_{j}}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)\right)^{2} \leq \sum_{j=1}^{3}\left(\frac{\partial f}{\partial x_{j}}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)\right)^{2} . \tag{*}
\end{equation*}
$$

(2) Consider the one-variable function

$$
F(r)=f\left(r \omega_{1}, r \omega_{2}, r \omega_{3}\right)
$$

defined in a neighborhood of 1 . Show that equality holds in $(*)$ if and only if $F^{\prime}(1)=0$.

3 Consider the following complex function $f(z)=h-\cos z$, where h is a non-negative real number, and $\cos z=\frac{e^{i z}+e^{-i z}}{2}$.
(1) Find all zeroes of $f(z)$.
(2) For every zero of $f(z)$, find the residue of $\frac{1}{f(z)}$.

4 Let X and Y be topological spaces. Let X_{1}, X_{2} be closed subsets of X satisfying $X=X_{1} \cup X_{2}$. Consider continuous functions $f_{1}: X_{1} \longrightarrow Y$ and $f_{2}: X_{2} \longrightarrow Y$ such that $f_{1}(x)=f_{2}(x)$ for all $x \in X_{1} \cap X_{2}$, where the topology of X_{1} and X_{2} is the relative toplogy with respect to X. Define the function $F: X \longrightarrow Y$ by

$$
F(x)= \begin{cases}f_{1}(x) & \left(\text { for } x \in X_{1}\right) \\ f_{2}(x) & \left(\text { for } x \in X_{2}\right) .\end{cases}
$$

(1) Show that $F^{-1}(V)=f_{1}^{-1}(V) \cup f_{2}^{-1}(V)$ for any subset V of Y.
(2) Show that $F: X \longrightarrow Y$ is a continuous function.

