Entrance Examination for the Ph. D. Program Graduate School of Mathematics Nagoya University 2015 Admission

Part 2 of 2

Thursday, February 5, 2015, 13:00 p.m.~16:00 p.m.

Note:

- 1. Please do not turn pages until told to do so.
- 2. The problem sheet consists of the cover page and 4 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
- 3. There are a total of 4 problems labeled **1**, **2**, **3**, and **4**, respectively. Please **answer all 4 problems**.
- 4. The answering sheet consists of 4 single-sided pages. Please confirm the number of pages, and please do not remove the staple.
- 5. Please write the answers to problems 1, 2, 3, and 4 on pages 1, 2, 3, and 4 of the answering sheet, respectively.
- 6. Please write name and application number in the space provided on each of the 4 pages in the answering sheet.
- 7. The back side of the 4 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
- 8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
- 9. After the exam has ended, please hand in the 4 page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

Notation:

The symbols \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

Let V be a vector space over the field K and W a subvector space of V. Define the equivalence relation \sim by

$$v_1 \sim v_2 \iff v_1 - v_2 \in W$$

on V, and let V/W be the quotient set with respect to the equivalence relation \sim . If we denote the element of V/W represented by $v \in V$ by \overline{v} , and define addition and scalar multiplication in V/W by

$$\overline{v_1} + \overline{v_2} = \overline{v_1 + v_2}, \quad c\overline{v} = \overline{cv}, \quad (v_1, v_2, v \in V, c \in K),$$

then V/W is a vector space over K.

- (1) Verify that the addition and scalar multiplication of V/W is well-defined (i.e., does not depend on the choice of the representative).
- (2) Suppose $W \neq V$ and $W \neq \{0\}$, where 0 denotes the zero vector. Show that for the basis v_1, \ldots, v_k of W there exits $v_{k+1}, \ldots, v_n \in V$ such that v_1, \ldots, v_n is a basis of V.
- (3) Use (2) to show that $\overline{v_{k+1}}, \ldots, \overline{v_n}$ is a basis of V/W.

(2) Let $f(x_1, x_2, x_3)$ be a C^1 -function which is defined in a neighborhood of $S^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1^2 + x_2^2 + x_3^2 = 1\}$ in \mathbb{R}^3 . Define the function $g(u_1, u_2, u_3)$ on \mathbb{R}^3 minus the origin by

$$g(u_1, u_2, u_3) = f\left(\frac{u_1}{\sqrt{u_1^2 + u_2^2 + u_3^2}}, \frac{u_2}{\sqrt{u_1^2 + u_2^2 + u_3^2}}, \frac{u_3}{\sqrt{u_1^2 + u_2^2 + u_3^2}}\right).$$

Let $(\omega_1, \omega_2, \omega_3)$ be a fixed point of S^2 .

(1) Show that the following inequality holds:

$$\sum_{j=1}^{3} \left(\frac{\partial g}{\partial u_j}(\omega_1, \omega_2, \omega_3) \right)^2 \le \sum_{j=1}^{3} \left(\frac{\partial f}{\partial x_j}(\omega_1, \omega_2, \omega_3) \right)^2.$$
(*)

(2) Consider the one-variable function

$$F(r) = f(r\omega_1, r\omega_2, r\omega_3)$$

defined in a neighborhood of 1. Show that equality holds in (*) if and only if F'(1) = 0.

(February 5, 2015)

(3) Consider the following complex function $f(z) = h - \cos z$, where h is a non-negative real number, and $\cos z = \frac{e^{iz} + e^{-iz}}{2}$.

- (1) Find all zeroes of f(z).
- (2) For every zero of f(z), find the residue of $\frac{1}{f(z)}$.

(4)

Let X and Y be topological spaces. Let X_1, X_2 be closed subsets of X satisfying $X = X_1 \cup X_2$. Consider continuous functions $f_1: X_1 \longrightarrow Y$ and $f_2: X_2 \longrightarrow Y$ such that $f_1(x) = f_2(x)$ for all $x \in X_1 \cap X_2$, where the topology of X_1 and X_2 is the relative topology with respect to X. Define the function $F: X \longrightarrow Y$ by

$$F(x) = \begin{cases} f_1(x) & \text{(for } x \in X_1) \\ f_2(x) & \text{(for } x \in X_2). \end{cases}$$

- (1) Show that $F^{-1}(V) = f_1^{-1}(V) \cup f_2^{-1}(V)$ for any subset V of Y.
- (2) Show that $F: X \longrightarrow Y$ is a continuous function.