Entrance Examination for the Ph. D. Program Graduate School of Mathematics Nagoya University 2015 Admission

Part 1 of 2

Thursday, February 5, 2015, 9:00 a.m.~12:00 noon

Note:

- 1. Please do not turn pages until told to do so.
- 2. The problem sheet consists of the cover page and 4 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
- 3. There are a total of 4 problems labeled $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$, respectively. Please answer all 4 problems.
- 4. The answering sheet consists of 4 single-sided pages. Please **confirm the** number of pages, and please do not remove the staple.
- 5. Please write the answers to problems $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ on pages $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ of the answering sheet, respectively.
- 6. Please write name and application number in the space provided on each of the 4 pages in the answering sheet.
- 7. The back side of the 4 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
- 8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
- 9. After the exam has ended, please hand in the 4 page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

Notation:

The symbols \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

Consider the following graph with vertices A_1 , A_2 , A_3 and edges as indicated. Let m_i be the number of edges with endpoint A_i , k_{ij} the number of edges connecting A_i and A_j , and set $p_{ij} = k_{ij}/m_i$, Consider the 3×3 -matrix $P = (p_{ij})$.

- (1) Determine the matrix P, all of its eigenvalues, and the eigenspaces corresponding to these eigenvalues.
- (2) For an integer n and $x_0 = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3$, let $x_n = P^n x_0$. Find the limit $\lim_{n \to \infty} x_n$.

Let V be an \mathbb{R} -vector space and \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , \mathbf{x}_4 be linearly independent vectors in V. For given $a, b \in \mathbb{R}$, consider the following vectors

$$\mathbf{y}_1 = 2\,\mathbf{x}_2 + 4\,\mathbf{x}_3 + 2\,\mathbf{x}_4, \qquad \qquad \mathbf{y}_2 = 2\,\mathbf{x}_1 + a\,\mathbf{x}_2 - 4\,\mathbf{x}_3 + \mathbf{x}_4$$

$$\mathbf{y}_3 = -\mathbf{x}_1 + 2\mathbf{x}_2 + b\mathbf{x}_3 + 2\mathbf{x}_4, \quad \mathbf{y}_4 = 2\mathbf{x}_1 + \mathbf{x}_2 + 4\mathbf{x}_3 + 5\mathbf{x}_4.$$

- (1) Determine for which values of a and b the vectors \mathbf{y}_1 , \mathbf{y}_2 , \mathbf{y}_3 , \mathbf{y}_4 are linearly independent.
- (2) Determine for which values of a and b the vectors \mathbf{y}_1 , \mathbf{y}_2 , \mathbf{y}_3 are linearly dependent.

3 For t > 0, and $x, y \in \mathbb{R}$, define

$$u(t, x, y) = \frac{1}{t} \exp\left(-\frac{x^2 + y^2}{t}\right).$$

(1) Determine for which x and y the limit

$$\lim_{t \to +0} u(t, x, y)$$

exists, and determine its value.

(2) Find the value of the double integral

$$\iint_{\mathbb{R}^2} u(t,x,y) \, dx dy.$$

(3) Find the constant k for which the equation

$$k \frac{\partial u}{\partial t}(t, x, y) = \frac{\partial^2 u}{\partial x^2}(t, x, y) + \frac{\partial^2 u}{\partial y^2}(t, x, y)$$

holds for all t > 0, $x, y \in \mathbb{R}$.

ig(4ig) Consider the plane curve defined by the equation

$$C = \{(x,y) \in \mathbb{R}^2 \mid x^3 - y^3 + x - y - 4 = 0\}.$$

- (1) Show that the maximum of the distance of points (x, y) on C to the origin (0, 0) does not exist.
- (2) Find the minimum of the distance of points (x, y) on C to the origin (0, 0).