Entrance Examination for the Ph. D. Program Graduate School of Mathematics Nagoya University 2015 Admission

Part 2 of 2

Saturday, July 26, 2014, 13:00 p.m.~16:00 p.m.

Note:

- 1. Please do not turn pages until told to do so.
- 2. The problem sheet consists of the cover page and 4 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
- 3. There are a total of 4 problems labeled $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$, respectively. Please answer all 4 problems.
- 4. The answering sheet consists of 4 single-sided pages. Please **confirm the** number of pages, and please do not remove the staple.
- 5. Please write the answers to problems $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ on pages $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ of the answering sheet, respectively.
- 6. Please write name and application number in the space provided on each of the 4 pages in the answering sheet.
- 7. The back side of the 4 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
- 8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
- 9. After the exam has ended, please hand in the 4-page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

Notation:

The symbols \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

- igl(1) Let V be an n-dimensional real vector space with an inner product (,). Consider an arbitrary basis $\{a_1,\ldots,a_n\}$ of V.
 - (1) Let $\{e_1, \ldots, e_n\}$ be an arbitrary orthonormal basis of V. For the two bases $\{e_1, \ldots, e_n\}$ and $\{a_1, \ldots, a_n\}$, let $P = (p_{ij})$ be the transformation matrix, that is,

$$a_j = \sum_{i=1}^n p_{ij} e_i.$$

If $C = (c_{ij})$ is the $n \times n$ matrix given by

$$c_{ij} = (a_i, a_j),$$

then express C using P. Furthermore, show that $\det C > 0$.

- (2) Show that there exists a unique *n*-element subset $\{b_1, \ldots, b_n\}$ of V such that $(a_i, b_j) = \delta_{ij}$ (where δ_{ij} is the Kronecker's delta).
- (3) Show that $\{b_1, \ldots, b_n\}$ in (2) is a basis of V. Also, show that $\det D = (\det C)^{-1}$, where $D = (d_{ij})$ is the $n \times n$ matrix given by

$$d_{ij} = (b_i, b_j).$$

(July 26, 2014) (over)

2 Suppose that $\varphi(x,y)$ is a continuous function on \mathbb{R}^2 satisfying

$$\iint_{\mathbb{R}^2} \varphi(x, y) \, dx dy = 1, \quad \varphi(x, y) \ge 0.$$

Let $\varphi_t(x,y) = t^{-2}\varphi(t^{-1}x,t^{-1}y)$ for each t > 0. Also, let f(x,y) be a continuous function on \mathbb{R}^2 that is identically 0 outside a bounded set $K \subset \mathbb{R}^2$.

(1) Fine the value of the double integral

$$\iint_{\mathbb{R}^2} \varphi_t(x,y) \, dx dy.$$

(2) For each $\delta > 0$, find the right-hand limit

$$\lim_{t \to +0} \iint_{x^2+y^2 \ge \delta^2} \varphi_t(x,y) \, dx dy.$$

- (3) Explain why f(x,y) is bounded on \mathbb{R}^2 .
- (4) Prove that the equation

$$\lim_{t \to +0} \iint_{\mathbb{R}^2} \varphi_t(x, y) f(x, y) \, dx dy = f(0, 0)$$

holds.

(July 26, 2014) (over)

3 For R > 0, let Γ_R be the boundary of D_R traversed counterclockwise, where D_R is the semidisk

$$D_R = \{ z \in \mathbb{C} \mid |z| \le R, \operatorname{Im} z \ge 0 \}$$

in the complex plane. Here, $\operatorname{Im} z$ denotes the imaginary part of z.

(1) Let $\alpha, \beta, \gamma \in \mathbb{C}$, none of which belongs to Γ_R . Find the conditions on α, β, γ for which the complex integral

$$\int_{\Gamma_R} \frac{dz}{(z-\alpha)(z-\beta)(z-\gamma)}$$

equals 0.

(2) Let $\alpha, \beta, \gamma \in \mathbb{C}$, none of which is on the real axis. Find the conditions on α, β , γ for which the improper integral

$$\int_{-\infty}^{\infty} \frac{dx}{(x-\alpha)(x-\beta)(x-\gamma)}$$

equals 0.

(July 26, 2014) (over)

4 Let A be a subset of a topological space X. A point x in A is called an interior point of A if there exists an open set U of X such that $x \in U$ and $U \subset A$. Let A° and A^{\times} be the subsets of X defined by

 A° : the set of interior points of A,

 A^{\times} : the union of all open sets contained in A.

- (1) Show that $A^{\circ} = A^{\times}$.
- (2) For subsets A_1, \ldots, A_n of X, prove that the following holds.

$$\left(\bigcap_{i=1}^{n} A_i\right)^{\circ} = \bigcap_{i=1}^{n} A_i^{\circ}.$$

(3) Give an example of a topological space X and an infinite family $\{A_{\lambda}\}_{{\lambda}\in\Lambda}$ of subsets of X for which

$$\left(\bigcap_{\lambda\in\Lambda}A_{\lambda}\right)^{\circ}\neq\bigcap_{\lambda\in\Lambda}A_{\lambda}^{\circ}.$$

(July 26, 2014) (end)