Entrance Examination for the Ph. D. Program Graduate School of Mathematics Nagoya University 2015 Admission

Part 1 of 2

Saturday, July 26, 2014, 9:00 a.m.~12:00 noon

Note:

- 1. Please do not turn pages until told to do so.
- 2. The problem sheet consists of the cover page and 4 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
- 3. There are a total of 4 problems labeled $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$, respectively. Please answer all 4 problems.
- 4. The answering sheet consists of 4 single-sided pages. Please **confirm the** number of pages, and please do not remove the staple.
- 5. Please write the answers to problems $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ on pages $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ of the answering sheet, respectively.
- 6. Please write name and application number in the space provided on each of the 4 pages in the answering sheet.
- 7. The back side of the 4 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
- 8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
- 9. After the exam has ended, please hand in the 4-page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

Notation:

The symbols \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

- $oxed{1}$ Let V be the vector space over $\mathbb C$ consisting of polynomials in x of degree at most 2 with complex coefficients.
 - (1) For a complex number m, let T_m be the linear transformation of V given by $T_m(f(x)) = mf(x) 2f(1)x^2 + f(2)x$. Obtain the representation matrix of T_m with respect to the basis $\{1, x, x^2\}$ of V.
 - (2) Find all m such that there is a nonzero element f(x) in V satisfying $T_m(f(x)) = 0$, where T_m is the linear transformation defined in (1). Furthermore, for each such m, find all f(x) for which $T_m(f(x)) = 0$.

(July 26, 2014) (over)

- Let P be a plane in \mathbb{R}^3 containing the origin and consider the map $\varphi \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ such that each point and its image are symmetric with respect to P.
 - (1) For $x \in \mathbb{R}^3$, express $\varphi(x)$ using a unit normal vector n of P. Also, show that φ is a linear map.
 - (2) Find the eigenvalues of φ and eigenspace corresponding to each eigenvalue.

(July 26, 2014) (over)

- [3] Answer the following questions.
 - (1) Compute the value of the following iterated integral.

$$\int_{1}^{2} dy \int_{\sqrt{y-1}}^{1} \frac{xy}{1+x^{2}} \exp\left(\frac{y^{2}}{1+x^{2}}\right) dx + \int_{0}^{1} dx \int_{0}^{1} \frac{xy}{1+x^{2}} \exp\left(\frac{y^{2}}{1+x^{2}}\right) dy$$

(2) For the function f on \mathbb{R}^2 given by

$$f(x,y) = (2 + x^2 + y^2)^{xy},$$

determine the polynomial p(x, y) of degree 2 such that the following equation holds.

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y) - p(x,y)}{x^2 + y^2} = 0$$

(July 26, 2014) (over)

- (4) Answer the following questions.
 - (1) Suppose that f(x,y) on \mathbb{R}^2 is of class C^2 and define a function F(t) on \mathbb{R} by

$$F(t) = f(2 - e^{-t}\cos t, 1 + e^{-t}\sin t).$$

Express F''(0) using the values of the partial derivatives of f.

(2) Find all extremal values of the function $g(x,y)=x^4+y^4-2x^2y^2+4x^3-4y^3+4x^2$ on \mathbb{R}^2 .

(July 26, 2014) (end)