1 Let λ and μ be different complex numbers, and assume that the complex 3×3 square matrix A satisfies

Condition 1: $(A-\lambda I)^{2} \neq O, \quad A-\mu I \neq O$

Condition 2: $(A-\lambda I)^{2}(A-\mu I)=O$.

Here, I is the identity matrix and O the zero matrix.
(1) Show that λ and μ are eigenvalues of A, and that they are the only eigenvalues of A.
(2) Show that $\operatorname{Ker}(A-\lambda I)^{2} \cap \operatorname{Ker}(A-\mu I)=\{0\}$.
(3) Show that

$$
u-\frac{1}{(\mu-\lambda)^{2}}(A-\lambda I)^{2} u \in \operatorname{Ker}(A-\lambda I)^{2}
$$

for any $u \in \mathbb{C}^{3}$.
(4) Show that there is a direct sum decomposition

$$
\mathbb{C}^{3}=\operatorname{Ker}(A-\lambda I)^{2} \oplus \operatorname{Ker}(A-\mu I) .
$$

2 Let $f(x, y)$ be a real valued C^{2} function on \mathbb{R}^{2}, and for two different points $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in \mathbb{R}^{2}$ consider the line segment

$$
\gamma(t)=\left((1-t) a_{1}+t a_{2},(1-t) b_{1}+t b_{2}\right) \quad(0 \leq t \leq 1) .
$$

Consider the composition $F(t)=f(\gamma(t))$.
(1) Express the second derivative $F^{\prime \prime}(t)$ in terms of $a_{1}, a_{2}, b_{1}, b_{2}$ and the second partial derivatives $f_{x x}, f_{x y}, f_{y y}$ of f.
(2) Show that if f satisfies $f_{x x}>0$ as well as $f_{x x} f_{y y}-f_{x y}^{2}>0$ in a neighborhood of the line segment $\{\gamma(t) \mid 0 \leq t \leq 1\}$, then $F^{\prime \prime}(t)>0$ for any $t \in(0,1)$.
(3) Under the same assumptions as in (2), show that

$$
f\left(\frac{a_{1}+a_{2}}{2}, \frac{b_{1}+b_{2}}{2}\right)<\frac{f\left(a_{1}, b_{1}\right)+f\left(a_{2}, b_{2}\right)}{2} .
$$

3 Let $R>0$, and let Γ_{R} be the path of integration in the complex plane given by running counter-clockwise through the closed curve which consists of

$$
\Gamma_{1, R}=[0, R], \quad \Gamma_{2, R}=\left\{R e^{i \theta} \left\lvert\, 0 \leq \theta \leq \frac{\pi}{4}\right.\right\}, \quad \Gamma_{3, R}=\left\{r e^{\pi i / 4} \mid 0 \leq r \leq R\right\} .
$$

(1) Calculate the value of the integral $\int_{\Gamma_{R}} e^{-z^{2}} d z$.
(2) Show that $\lim _{R \rightarrow \infty} \int_{\Gamma_{2, R}} e^{-z^{2}} d z=0$.
(3) Show that the integral $\int_{0}^{\infty} e^{-i x^{2}} d x$ converges, and calculate its value. You can use the identity $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$.

4 Given non-empty subsets E, F of \mathbb{R}^{2}, let

$$
\rho(E, F)=\inf \{\|u-v\| \mid u \in E, v \in F\}
$$

where $\|w\|=\sqrt{x^{2}+y^{2}}$ for $w=(x, y)$ in \mathbb{R}^{2}.
(1) Show that there are sequences of points $\left\{u_{n}\right\} \subset E$ and $\left\{v_{n}\right\} \subset F$ such that $\lim _{n \rightarrow \infty}\left\|u_{n}-v_{n}\right\|=\rho(E, F)$.
(2) Show that if E is bounded, then there is a strictly increasing sequence of positive integers $\left\{n_{k}\right\}$ such that the subsequences $\left\{u_{n_{k}}\right\}$ and $\left\{v_{n_{k}}\right\}$ of the sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ of part (1) both converge for $k \rightarrow \infty$.
(3) Show that if E is bounded as well as closed and F is closed, then

$$
\rho(E, F)=\min \{\|u-v\| \mid u \in E, v \in F\} .
$$

(4) Give an example (together with the reason) showing that $\min \{\|u-v\| \mid u \in$ $E, v \in F\}$ does not exist even if E, F are both closed.

