1 Let V be the real vector space of 2×2 square matrices with real entries, and consider the linear map $f: V \rightarrow V$ given by

$$
f(X)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) X\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \quad(X \in V)
$$

Let

$$
E_{11}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad E_{12}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad E_{21}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad E_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

(1) Show that $\left\{E_{11}, E_{12}, E_{21}, E_{22}\right\}$ is a basis of V, and give the representing matrix of f with respect to this basis.
(2) Determine the dimension of the image $\operatorname{Im} f$.
(3) Give a basis of the kernel $\operatorname{Ker} f$.

2 For a given real 4×4 square matrix X, we define $X_{11}, X_{12}, X_{21}, X_{22}$ to be the 2×2 square matrices in a block decomposition of X as follows:

$$
X=\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right)
$$

Let A, B, Z be real 4×4 matrices satisfying

$$
A_{12}=O, \quad A_{21}=O, \quad A_{22}=O, \quad B_{21}=O, \quad \operatorname{det}(A Z+B) \neq 0
$$

where we write O for the 2×2 zero matrix.
(1) Show that $A_{11} Z_{11}+B_{11}$ and B_{22} are regular matrices.
(2) Let $S=(A Z+B)^{-1}$. Express S_{11}, S_{22} in terms of the blocks of A, B and Z.
(3) For real 4×4 square matrices C and D, let $T=(C Z+D) S$, where S is as in (2). Show that if $C_{12}=O$, then

$$
T_{11}=\left(C_{11} Z_{11}+D_{11}\right)\left(A_{11} Z_{11}+B_{11}\right)^{-1} .
$$

3 Consider the map $\Phi:(0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by

$$
\Phi(r, t)=(r \cosh t, r \sinh t) \quad(r>0, t \in \mathbb{R}),
$$

where

$$
\cosh t=\frac{e^{t}+e^{-t}}{2}, \quad \sinh t=\frac{e^{t}-e^{-t}}{2} \quad(t \in \mathbb{R})
$$

(1) Show that for any fixed $r_{0}>0$, the point $(x, y)=\Phi\left(r_{0}, t\right)$ lies on the curve

$$
C_{r_{0}}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}-y^{2}=r_{0}^{2}, x \geq r_{0}\right\} .
$$

(2) Show that $\Phi:(0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}^{2}$ is injective, and that the image of Φ is

$$
D=\left\{(x, y) \in \mathbb{R}^{2} \mid x+y>0, x-y>0\right\} .
$$

(3) Fix $r_{0}>0$ and $t_{0}>0$, and let P_{0} be the point $\left(x_{0}, y_{0}\right)=\Phi\left(r_{0}, t_{0}\right)$. Draw the region bounded by the line from the origin $(0,0)$ to P_{0}, the x-axis, and the curve $C_{r_{0}}$ given in (1), and calculate its area.

4 (1) Suppose that the sequence of real numbers $\left\{A_{n}\right\}$ either diverges $\lim _{n \rightarrow \infty} A_{n}=\infty$, or converges to a number larger than $1, \lim _{n \rightarrow \infty} A_{n}>1$. Then, show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{A_{n}}}$ converges.
(2) For $\alpha \in \mathbb{R}$, give a function $f_{\alpha}(t)$ on $(0, \infty)$ such that the equation

$$
(\log n)^{(\log n)^{\alpha}}=n^{f_{\alpha}(\log n)}
$$

holds for any integer $n \geq 2$.
(3) Given $\alpha \in \mathbb{R}$, determine whether or not the series

$$
\sum_{n=2}^{\infty} \frac{1}{(\log n)^{(\log n)^{\alpha}}}
$$

converges.

