1 Let a, b, c, d be real numbers and

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
a & b & c & d
\end{array}\right)
$$

(1) Find the characteristic polynomial of A.
(2) Show that for every eigenvalue of A, the corresponding eigenspace is 1 dimensional.
(3) Find the Jordan normal form for $a=b=-4, c=3$, and $d=2$. (It is not necessary to find the regular matrix tranforming A into its Jordan normal form).

2 (1) Show that the inequality

$$
\log (n+1)<1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \leq 1+\log n
$$

holds for all positive integers n.
(2) Show that the sequence $\left\{a_{n}\right\}$ with $a_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\log n$ converges for $n \rightarrow \infty$.
(3) Show that there are no polynomials with real coefficients $P(X), Q(X)$ such that

$$
\frac{P(n)}{Q(n)}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
$$

for every positive integer n.

3 Fix a real number $a>0$.
(1) For $N_{1}, N_{2}>0$, and $M>a$, let C be the path of integration given by running counterclockwise through the rectangle with vertices $-N_{1}, N_{2}, N_{2}+i M,-N_{1}+$ $i M$ in the complex plane. Given a real parameter ξ, find the value of the integral

$$
\int_{C} \frac{e^{i \xi z}}{z-i a} d z
$$

(2) For $\xi>0$, show that the integral

$$
\int_{-\infty}^{\infty} \frac{e^{i \xi x}}{x-i a} d x
$$

converges, and find its value.
(3) For $\xi<0$, replace the path of integration C of (1) by another suitable one to show that the integral

$$
\int_{-\infty}^{\infty} \frac{e^{i \xi x}}{x-i a} d x
$$

converges, and calculate its value.

4 Given a point $a \in \mathbb{R}^{n}$ and a real valued function f defined in a neighborhood of a, we say that f is continuous in a if for all $\varepsilon>0$ there exisits a $\delta=\delta(a)>0$ such that

$$
\begin{equation*}
x \in \mathbb{R}^{n},\|x-a\|<\delta \Longrightarrow|f(x)-f(a)|<\varepsilon . \tag{A}
\end{equation*}
$$

Here $\|\cdot\|$ is the Euclidean norm, i.e. $\|x\|=\sqrt{\sum_{k=1}^{n} x_{k}^{2}}$ for $x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$.
(1) Assuming (A), show that for every $y \in \mathbb{R}^{n}$ satisfying $\|y-a\|<\frac{\delta}{2}$, one has

$$
x \in \mathbb{R}^{n},\|x-y\|<\frac{\delta}{2} \Longrightarrow|f(x)-f(y)|<2 \varepsilon
$$

(2) Let f be a real valued function defined in a neighborhood of the closed, bounded set $K \subset \mathbb{R}^{n}$, and assume that f is continuous in every point $a \in K$. Show that f is uniformly continuous on K, i.e. for all $\varepsilon>0$ there exists a $\delta>0$ such that

$$
x, y \in K,\|x-y\|<\delta \Longrightarrow|f(x)-f(y)|<\varepsilon
$$

