$(\underline{1})$ Let $f : \mathbb{R}^4 \to \mathbb{R}^4$ be the linear map given by

$$f(u) = Au \qquad (u \in \mathbb{R}^4)$$

for

$$A = \begin{pmatrix} 1 & 3 & -2 & 1 \\ 4 & 6 & -5 & 1 \\ 3 & 1 & -2 & -1 \\ 0 & -2 & 1 & -1. \end{pmatrix}$$

- (1) Determine the dimension and find a basis of Ker f.
- (2) Determine the dimension and find a basis of Im f.
- (3) For a given real number t, let W_t be the subvector space of \mathbb{R}^4 spanned by the vectors

$$\begin{pmatrix} 1\\t\\3\\-2 \end{pmatrix}, \begin{pmatrix} 1\\-2\\-5\\t \end{pmatrix}.$$

Find the values of t for which the subspace $(\text{Im } f) + W_t$ is a 3-dimensional subvectorspace.

- Let ^tA be the transpose of the matrix A. Given an integer $n \ge 2$, we say that a symmetric real $n \times n$ -matrix A is postive definite if ^tuAu > 0 for any $u \in \mathbb{R}^n \setminus \{0\}$.
 - (1) Show that for any real regular matrix B, the matrix $A = {}^{t}BB$ is a positive definite, symmetric real matrix.
 - (2) Show that for a positive definite, symmetric real matrix A, every eigenvalue is a postive real number.
 - (3) Show that for every positive definite, symmetric real matrix A, there is a real regular matrix B such that $A = {}^{t}BB$.

Summer 2014, Morning

- (1) Among all rectangular parallelepipeds whose sum of the length of the edges is 12, find one with maximal surface area.
 - (2) Show that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$. Use this to calculate, for given $a \in \mathbb{R}$ and b > 0,

the value of the improper integral

$$\iint_{D} e^{-ax-by} \, dxdy, \qquad D = \{(x,y) \in \mathbb{R}^2 | \ y - x^2 > 0\}.$$

(3) Find the area of the cylinder surface $x^2 + y^2 = 4$ inside of the solid body

$$\{(x, y, z) \in \mathbb{R}^3 | |x| \le 2, |y| \le 2, 0 \le z \le 4 - x^2\}.$$

- (1) Let f be the real valued function given by $f(x) = \log(1+x)$ on the interval $(-1, \infty)$. Find the Taylor expansion and its radius of convergence of f at x = 0 (Give a reason).
 - (2) For a positive integer n, let $a_n = \left(1 + \frac{1}{n}\right)^n$. Use the expansion of (1) to find the real number γ such that

$$\lim_{n \to \infty} n^{\gamma} (\log a_n - 1)$$

has a finite value different from 0. For such γ , calculate the limit.

(3) For $\{a_n\}$ and γ as in (2), find the limit

$$\lim_{n \to \infty} n^{\gamma} (a_n - e).$$