(1) Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear map given by

$$
f(u)=A u \quad\left(u \in \mathbb{R}^{4}\right)
$$

for

$$
A=\left(\begin{array}{cccc}
1 & 3 & -2 & 1 \\
4 & 6 & -5 & 1 \\
3 & 1 & -2 & -1 \\
0 & -2 & 1 & -1
\end{array}\right)
$$

(1) Determine the dimension and find a basis of $\operatorname{Ker} f$.
(2) Determine the dimension and find a basis of $\operatorname{Im} f$.
(3) For a given real number t, let W_{t} be the subvectorspace of \mathbb{R}^{4} spanned by the vectors

$$
\left(\begin{array}{c}
1 \\
t \\
3 \\
-2
\end{array}\right), \quad\left(\begin{array}{c}
1 \\
-2 \\
-5 \\
t
\end{array}\right) .
$$

Find the values of t for which the subspace $(\operatorname{Im} f)+W_{t}$ is a 3 -dimensional subvectorspace.

2 Let ${ }^{t} A$ be the transpose of the matrix A. Given an integer $n \geq 2$, we say that a symmetric real $n \times n$-matrix A is postive definite if ${ }^{t} u A u>0$ for any $u \in \mathbb{R}^{n} \backslash\{0\}$.
(1) Show that for any real regular matrix B, the matrix $A={ }^{t} B B$ is a positive definite, symmetric real matrix.
(2) Show that for a positive definite, symmetric real matrix A, every eigenvalue is a postive real number.
(3) Show that for every positive definite, symmetric real matrix A, there is a real regular matrix B such that $A={ }^{t} B B$.

3 (1) Among all rectangular parallelepipeds whose sum of the length of the edges is 12 , find one with maximal surface area.
(2) Show that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$. Use this to calculate, for given $a \in \mathbb{R}$ and $b>0$, the value of the improper integral

$$
\iint_{D} e^{-a x-b y} d x d y, \quad D=\left\{(x, y) \in \mathbb{R}^{2} \mid y-x^{2}>0\right\} .
$$

(3) Find the area of the cylinder surface $x^{2}+y^{2}=4$ inside of the solid body

$$
\left\{(x, y, z) \in \mathbb{R}^{3}| | x\left|\leq 2,|y| \leq 2,0 \leq z \leq 4-x^{2}\right\}\right.
$$

4 (1) Let f be the real valued function given by $f(x)=\log (1+x)$ on the interval $(-1, \infty)$. Find the Taylor expansion and its radius of convergence of f at $x=0$ (Give a reason).
(2) For a positive integer n, let $a_{n}=\left(1+\frac{1}{n}\right)^{n}$. Use the expansion of (1) to find the real number γ such that

$$
\lim _{n \rightarrow \infty} n^{\gamma}\left(\log a_{n}-1\right)
$$

has a finite value different from 0 . For such γ, calculate the limit.
(3) For $\left\{a_{n}\right\}$ and γ as in (2), find the limit

$$
\lim _{n \rightarrow \infty} n^{\gamma}\left(a_{n}-e\right) .
$$

