1 Consider the following three functions $u_{1}(t)=e^{t}, u_{2}(t)=t e^{t}, u_{3}(t)=\frac{t^{2}}{2} e^{t}$ defined on \mathbb{R}.
(1) Let V be the real vector space V of real valued C^{∞}-functions on \mathbb{R}. Show that $\left\{u_{1}(t), u_{2}(t), u_{3}(t)\right\}$ are linear independent as elements V.
(2) Let W be the \mathbb{R}-subvectorspace of V generated by $u_{1}(t), u_{2}(t), u_{3}(t)$. Verify that $\frac{d}{d t}$ is a linear map from W to W, and calculate the representing matrix A with respect to the basis $\left\{u_{1}(t), u_{2}(t), u_{3}(t)\right\}$.
(3) Prove that the solution space of the differential equation $\frac{d^{3} u}{d t^{3}}-3 \frac{d^{2} u}{d t^{2}}+3 \frac{d u}{d t}-u=$ 0 contains the 3 -dimensional vector space spanned by $u_{1}(t), u_{2}(t), u_{3}(t)$.
(4) Prove that if $u(t)=C(t) e^{t}$ is a solution of the differential equation $\frac{d^{3} u}{d t^{3}}-3 \frac{d^{2} u}{d t^{2}}+$ $3 \frac{d u}{d t}-u=0$, then $C(t)$ is a polynomial of degree at most 2.
(5) Determine the space of solutions of the differential equation $\frac{d^{3} u}{d t^{3}}-3 \frac{d^{2} u}{d t^{2}}+3 \frac{d u}{d t}-$ $u=0$.

2 Define the functions $\phi_{n}(n=1,2, \ldots)$ on $[0, \infty)$ by $\phi_{n}(x)=n^{2} x e^{-n x}$.
(1) Calculate $\int_{0}^{\infty} \phi_{n}(x) d x$.
(2) Show that, for any $\delta>0$, the functions $\left\{\phi_{n}\right\}$ converge uniformly to 0 on $[\delta, \infty)$.
(3) Show that for any bounded, continuous function f on $[0, \infty)$, $\lim _{n \rightarrow \infty} \int_{0}^{\infty} f(x) \phi_{n}(x) d x=f(0)$ holds.

3
Answer the following questions
(1) Assume that the function $f(z)$ is regular on a domain containing the disk $D_{R}=$ $\left\{|z \in \mathbb{C},|z| \leq R\}\right.$. Prove that if $z \in \mathbb{C}$ lies in the disc D_{R}, then

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{|\zeta|=R} \frac{f(\zeta)}{(\zeta-z)^{2}} d \zeta .
$$

(2) Use (1) to prove that a regular function $f(z)$, which is bounded on the whole complex plane, satisfies $f^{\prime}(z) \equiv 0$.
(3) Determine the subset of the z-plane which maps under the regular function $w=e^{z}$ to the domain $\{w \in \mathbb{C}||w|<a\}(a>0)$ of the w-plane, and graph it.
(4) Show that a regular function defined on the whole complex plane whose real part is non-positive is a constant function.
(4) For a subset M of \mathbb{R}^{n} and a point x of \mathbb{R}^{n} define

$$
d(x, M)=\inf \{|x-y| \mid y \in M\} .
$$

Here $|x|$ is the Eucidean norm, i.e. for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ we define $|x|=$ $\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$.
(1) Show that $d(x, M)=0$ is a necessary and sufficient condition for $x \in \bar{M}$.
(2) Show that $d(x, M) \leq|y-z|+|x-y|$ for any two points x, y in \mathbb{R}^{n}, and any point z in M.
(3) Show that for fixed M, the function $x \mapsto d(x, M)$ is continuous on \mathbb{R}^{n}.
(4) Show that if M is closed, then for any $x \in \mathbb{R}^{n}$ there is a $y^{*} \in M$ such that

$$
\left|x-y^{*}\right|=d(x, M)
$$

