) Consider the following three functions $u_1(t) = e^t$, $u_2(t) = t e^t$, $u_3(t) = \frac{t^2}{2} e^t$ defined on \mathbb{R} .

- (1) Let V be the real vector space V of real valued C^{∞} -functions on \mathbb{R} . Show that $\{u_1(t), u_2(t), u_3(t)\}$ are linear independent as elements V.
- (2) Let W be the \mathbb{R} -subvectorspace of V generated by $u_1(t)$, $u_2(t)$, $u_3(t)$. Verify that $\frac{d}{dt}$ is a linear map from W to W, and calculate the representing matrix A with respect to the basis $\{u_1(t), u_2(t), u_3(t)\}$.

(3) Prove that the solution space of the differential equation $\frac{d^3u}{dt^3} - 3\frac{d^2u}{dt^2} + 3\frac{du}{dt} - u = 0$ contains the 3-dimensional vector space spanned by $u_1(t)$, $u_2(t)$, $u_3(t)$.

(4) Prove that if $u(t) = C(t)e^t$ is a solution of the differential equation $\frac{d^3u}{dt^3} - 3\frac{d^2u}{dt^2} + 3\frac{du}{dt} - u = 0$, then C(t) is a polynomial of degree at most 2.

(5) Determine the space of solutions of the differential equation $\frac{d^3u}{dt^3} - 3\frac{d^2u}{dt^2} + 3\frac{du}{dt} - u = 0.$

2 Define the functions ϕ_n (n = 1, 2, ...) on $[0, \infty)$ by $\phi_n(x) = n^2 x e^{-nx}$.

(1) Calculate
$$\int_0^\infty \phi_n(x) \, dx$$
.

- (2) Show that, for any $\delta > 0$, the functions $\{\phi_n\}$ converge uniformly to 0 on $[\delta, \infty)$.
- (3) Show that for any bounded, continuous function f on $[0, \infty)$, $\lim_{n \to \infty} \int_0^\infty f(x)\phi_n(x) \, dx = f(0) \text{ holds.}$

Answer the following questions

3

(1) Assume that the function f(z) is regular on a domain containing the disk $D_R = \{|z \in \mathbb{C}, |z| \leq R\}$. Prove that if $z \in \mathbb{C}$ lies in the disc D_R , then

$$f'(z) = \frac{1}{2\pi i} \int_{|\zeta|=R} \frac{f(\zeta)}{(\zeta-z)^2} d\zeta.$$

- (2) Use (1) to prove that a regular function f(z), which is bounded on the whole complex plane, satisfies $f'(z) \equiv 0$.
- (3) Determine the subset of the z-plane which maps under the regular function $w = e^z$ to the domain $\{w \in \mathbb{C} \mid |w| < a\}$ (a > 0) of the w-plane, and graph it.
- (4) Show that a regular function defined on the whole complex plane whose real part is non-positive is a constant function.

4

For a subset M of \mathbb{R}^n and a point x of \mathbb{R}^n define

$$d(x, M) = \inf\{|x - y| \mid y \in M\}.$$

Here |x| is the Euclidean norm, i.e. for $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ we define $|x| = \sqrt{\sum_{i=1}^n x_i^2}$.

- (1) Show that d(x, M) = 0 is a necessary and sufficient condition for $x \in \overline{M}$.
- (2) Show that $d(x, M) \leq |y z| + |x y|$ for any two points x, y in \mathbb{R}^n , and any point z in M.
- (3) Show that for fixed M, the function $x \mapsto d(x, M)$ is continuous on \mathbb{R}^n .
- (4) Show that if M is closed, then for any $x \in \mathbb{R}^n$ there is a $y^* \in M$ such that

$$|x - y^*| = d(x, M) .$$