Consider the following vectors of \mathbb{R}^4

$$\mathbf{s} = \begin{pmatrix} 1\\3\\5\\7 \end{pmatrix}, \ \mathbf{t} = \begin{pmatrix} -3\\1\\-7\\5 \end{pmatrix}, \ \mathbf{u} = \begin{pmatrix} -3\\0\\1\\5 \end{pmatrix}, \ \mathbf{v} = \begin{pmatrix} 1\\2\\-1\\3 \end{pmatrix}, \ \mathbf{a} = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 1\\-1\\1\\-1\\1\\-1 \end{pmatrix}$$

Define subsets U and V of \mathbb{R}^4 by

$$U = \mathbf{a} + \langle \{\mathbf{s}, \mathbf{t}\} \rangle_{\text{span}} \ , \ V = \mathbf{b} + \langle \{\mathbf{u}, \mathbf{v}\} \rangle_{\text{span}}$$

Here $\langle S \rangle_{\text{span}}$ denotes the subvectorspace generated by S for any subet S of \mathbb{R}^4 , and for a vector $\mathbf{c} \in \mathbb{R}^4$, and a subvectorspace $W \subset \mathbb{R}^4$, $\mathbf{c} + W = {\mathbf{c} + \mathbf{w} | \mathbf{w} \in W}$.

- (1) Find equations defining $\langle U \rangle_{\text{span}}$, i.e. find a system of equations of degree one whose solution set is $\langle U \rangle_{\text{span}}$.
- (2) Find all $\mathbf{x} \in V$ satisfying $\langle \{\mathbf{x}\} \rangle_{\text{span}} \cap U \neq \emptyset$.

2 Let $\langle \cdot, \cdot \rangle$ be the canonical Euclidean inner product of \mathbb{R}^3 , and \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 be a normal orthogonal basis with respect to this inner product. Define the linear map $f : \mathbb{R}^3 \to \mathbb{R}^3$ by

$$f(\mathbf{x}) = \mathbf{x} - \langle \mathbf{x}, \mathbf{v}_2 \rangle \mathbf{v}_1 - \langle \mathbf{x}, \mathbf{v}_1 \rangle \mathbf{v}_2.$$

Answer the following questions:

- (1) Find the representing matrix of f with respect to the basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
- (2) Find the eigenvalues and eigenvectors of the linear map f.
- (3) Show that the representing matrix A of the linear map f with respect to the canonical basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is symmetric.
- (4) Find the eigenvalues and eigenvectors of A.

$\left(\begin{array}{c} \mathbf{3} \end{array} \right)$ Answer the following questions.

(1) Find the limit

$$\lim_{x \to 0} (\cos x)^{1/x^2}.$$

(2) Let $D = \{(x, y) | x \ge 0, y \ge 0, x^3 + y^3 \le 1\}$. Find the value of the integral

$$\iint_D x^8 y^5 \, dx dy.$$

4

(1) Express the Taylor expansion of the function $f(x, y) = \log(x^2 + y^2)$ at x = y = 1in the form

$$f(x,y) = f(1,1) + f_x(1,1)(x-1) + f_y(1,1)(y-1) + R_2(x,y)$$

(Express the error term $R_2(x, y)$ in a suitable form).

- (2) Draw the shape of the surface $z = \log(x^2 + y^2)$.
- (3) Let x = y = 1. Determine one effective digit of the change of $z = \log(x^2 + y^2)$ if x increases by 0.003 and y decreases by 0.002. Also, explain the estimate of the error term on which your calculation is based.