1 Consider the following vectors of \mathbb{R}^{4}

$$
\mathbf{s}=\left(\begin{array}{l}
1 \\
3 \\
5 \\
7
\end{array}\right), \mathbf{t}=\left(\begin{array}{c}
-3 \\
1 \\
-7 \\
5
\end{array}\right), \mathbf{u}=\left(\begin{array}{c}
-3 \\
0 \\
1 \\
5
\end{array}\right), \mathbf{v}=\left(\begin{array}{c}
1 \\
2 \\
-1 \\
3
\end{array}\right), \mathbf{a}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), \mathbf{b}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right)
$$

Define subsets U and V of \mathbb{R}^{4} by

$$
U=\mathbf{a}+\langle\{\mathbf{s}, \mathbf{t}\}\rangle_{\mathrm{span}}, V=\mathbf{b}+\langle\{\mathbf{u}, \mathbf{v}\}\rangle_{\mathrm{span}}
$$

Here $\langle S\rangle_{\text {span }}$ denotes the subvectorspace generated by S for any subet S of \mathbb{R}^{4}, and for a vector $\mathbf{c} \in \mathbb{R}^{4}$, and a subvectorspace $W \subset \mathbb{R}^{4}, \mathbf{c}+W=\{\mathbf{c}+\mathbf{w} \mid \mathbf{w} \in W\}$.
(1) Find equations defining $\langle U\rangle_{\text {span }}$, i.e. find a system of equations of degree one whose solution set is $\langle U\rangle_{\text {span }}$.
(2) Find all $\mathbf{x} \in V$ satisfying $\langle\{\mathbf{x}\}\rangle_{\text {span }} \cap U \neq \emptyset$.

2 Let $\langle\cdot, \cdot\rangle$ be the canonical Euclidean inner product of \mathbb{R}^{3}, and $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be a normal orthogonal basis with respect to this inner product. Define the linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
f(\mathbf{x})=\mathbf{x}-\left\langle\mathbf{x}, \mathbf{v}_{2}\right\rangle \mathbf{v}_{1}-\left\langle\mathbf{x}, \mathbf{v}_{1}\right\rangle \mathbf{v}_{2} .
$$

Answer the following questions:
(1) Find the representing matrix of f with respect to the basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
(2) Find the eigenvalues and eigenvectors of the linear map f.
(3) Show that the representing matrix A of the linear map f with respect to the canonical basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is symmetric.
(4) Find the eigenvalues and eigenvectors of A.

3 Answer the following questions.
(1) Find the limit

$$
\lim _{x \rightarrow 0}(\cos x)^{1 / x^{2}} .
$$

(2) Let $D=\left\{(x, y) \mid x \geq 0, y \geq 0, x^{3}+y^{3} \leq 1\right\}$. Find the value of the integral

$$
\iint_{D} x^{8} y^{5} d x d y
$$

4 (1) Express the Taylor expansion of the function $f(x, y)=\log \left(x^{2}+y^{2}\right)$ at $x=y=1$ in the form

$$
f(x, y)=f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1)+R_{2}(x, y)
$$

(Express the error term $R_{2}(x, y)$ in a suitable form).
(2) Draw the shape of the surface $z=\log \left(x^{2}+y^{2}\right)$.
(3) Let $x=y=1$. Determine one effective digit of the change of $z=\log \left(x^{2}+y^{2}\right)$ if x increases by 0.003 and y decreases by 0.002 . Also, explain the estimate of the error term on which your calculation is based.

