1 Let a be a real number, and $A=A_{a}$ be the matrix

$$
A_{a}=\left(\begin{array}{ccc}
a & 2-2 a & -2+2 a \\
-1-a & -3+2 a & 2-2 a \\
-1-a & -3+a & 2-a
\end{array}\right) .
$$

(1) Show that A is diagonalizable if $a=1$.
(2) Determine the Jordan normal form of A for $a \neq 1$.
(3) Let \langle,$\rangle be the canonical Euclidean inner product. Determine for which a$ the sequence $\left\{\left\langle\mathbf{x}, A^{n} \mathbf{y}\right\rangle\right\}_{n=1}^{\infty}$ is bounded for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$.

2 Let $f(x, y)$ be a C^{2}-function, and $p(x, y)$ be a polynomial of degree at most 2. Assume that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-p(x, y)}{x^{2}+y^{2}}=0
$$

(1) Express $p(x, y)$ in terms of f and its (higher) partial derivatives (the answer suffices).
(2) Calculate $\frac{1}{2 \pi} \int_{0}^{2 \pi} p(r \cos \theta, r \sin \theta) d \theta$ for fixed $r>0$.
(3) Show that if $f(0,0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(r \cos \theta, r \sin \theta) d \theta$ holds for every $r>0$, then $f_{x x}(0,0)+f_{y y}(0,0)=0$.

3 Given a natural number $n \geq 2$ and a real number $R>0$, let $\gamma_{1, R}=[0, R], \quad \gamma_{2, R}=$ $\left\{R e^{i \theta} \mid 0 \leq \theta \leq 2 \pi / n\right\}, \gamma_{3, R}=\left\{r e^{2 \pi i / n} \mid 0 \leq r \leq R\right\}$. Let γ_{R} be the closed oriented curve given by running through $\gamma_{1, R}, \gamma_{1, R}$, and $\gamma_{1, R}$ counterclockwise.
(1) For $R>1$, calculate the integral $\int_{\gamma_{R}} \frac{d z}{z^{n}+1}$.
(2) Show that $\lim _{R \rightarrow \infty} \int_{\gamma_{2, R}} \frac{d z}{z^{n}+1}=0$.
(3) Calculate the integral $I_{n}=\int_{0}^{\infty} \frac{d x}{x^{n}+1}$.
(4) Calculate $\lim _{n \rightarrow \infty} I_{n}$.

4 Given real numbers a_{0}, a_{1}, a_{2} and a positive real number a_{3} let $f(x, y)=$ $f_{a_{0}, a_{1}, a_{2}, a_{3}}(x, y)$ be the polynomial

$$
f(x, y)=a_{0} x^{3}+a_{1} x^{2} y+a_{2} x y^{2}+a_{3} y^{3} .
$$

Let $C=C\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ be the subset of \mathbb{R}^{2} given by

$$
C=\{(x, y) \mid x, y \geq 0, f(x, y)=1\}
$$

(1) If C is bounded, then the function $x^{2}+y^{2}$ achieves its maximum on C. Explain why.
(2) Let $\alpha \geq 0$. Determine, for which $a_{0}, a_{1}, a_{2}, a_{3}, \alpha$, the set C intersects the line $y=\alpha x$. Determine the intersection point(s) if any exists.
(3) Let \mathcal{L} be the set of all lines $y=\alpha x$ with positive slope $\alpha \geq 0$. Show that C intersects every line $L \in \mathcal{L}$ if and only if C is bounded.
(4) Let A be the subset \mathbb{R}^{4} consisting of those $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ such that C is bounded. Show that A is an open subset of \mathbb{R}^{4}.

