1

Let *a* be a real number, and $A = A_a$ be the matrix

$$A_a = \begin{pmatrix} a & 2-2a & -2+2a \\ -1-a & -3+2a & 2-2a \\ -1-a & -3+a & 2-a \end{pmatrix}.$$

- (1) Show that A is diagonalizable if a = 1.
- (2) Determine the Jordan normal form of A for $a \neq 1$.
- (3) Let \langle , \rangle be the canonical Euclidean inner product. Determine for which *a* the sequence $\{\langle \mathbf{x}, A^n \mathbf{y} \rangle\}_{n=1}^{\infty}$ is bounded for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$.

2

Let f(x, y) be a C^2 -function, and p(x, y) be a polynomial of degree at most 2. Assume that

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-p(x,y)}{x^2+y^2} = 0$$

- (1) Express p(x, y) in terms of f and its (higher) partial derivatives (the answer suffices).
- (2) Calculate $\frac{1}{2\pi} \int_0^{2\pi} p(r\cos\theta, r\sin\theta) \, d\theta$ for fixed r > 0.
- (3) Show that if $f(0,0) = \frac{1}{2\pi} \int_0^{2\pi} f(r\cos\theta, r\sin\theta) d\theta$ holds for every r > 0, then $f_{xx}(0,0) + f_{yy}(0,0) = 0.$

3) Given a natural number $n \ge 2$ and a real number R > 0, let $\gamma_{1,R} = [0, R]$, $\gamma_{2,R} = \{Re^{i\theta} \mid 0 \le \theta \le 2\pi/n\}, \ \gamma_{3,R} = \{re^{2\pi i/n} \mid 0 \le r \le R\}$. Let γ_R be the closed oriented curve given by running through $\gamma_{1,R}, \gamma_{1,R}$, and $\gamma_{1,R}$ counterclockwise.

(1) For R > 1, calculate the integral $\int_{\gamma_R} \frac{dz}{z^n + 1}$.

(2) Show that
$$\lim_{R \to \infty} \int_{\gamma_{2,R}} \frac{dz}{z^n + 1} = 0.$$

- (3) Calculate the integral $I_n = \int_0^\infty \frac{dx}{x^n + 1}$.
- (4) Calculate $\lim_{n \to \infty} I_n$.

4

Given real numbers a_0, a_1, a_2 and a positive real number a_3 let $f(x, y) = f_{a_0,a_1,a_2,a_3}(x, y)$ be the polynomial

$$f(x,y) = a_0 x^3 + a_1 x^2 y + a_2 x y^2 + a_3 y^3.$$

Let $C = C(a_0, a_1, a_2, a_3)$ be the subset of \mathbb{R}^2 given by

$$C = \{(x, y) \mid x, y \ge 0, f(x, y) = 1\}$$

- (1) If C is bounded, then the function $x^2 + y^2$ achieves its maximum on C. Explain why.
- (2) Let $\alpha \ge 0$. Determine, for which $a_0, a_1, a_2, a_3, \alpha$, the set C intersects the line $y = \alpha x$. Determine the intersection point(s) if any exists.
- (3) Let \mathcal{L} be the set of all lines $y = \alpha x$ with positive slope $\alpha \ge 0$. Show that C intersects every line $L \in \mathcal{L}$ if and only if C is bounded.
- (4) Let A be the subset R⁴ consisting of those (a₀, a₁, a₂, a₃) such that C is bounded.
 Show that A is an open subset of R⁴.