1 For a real number t, let A and B be the matrices

$$
A=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
1 & 1 & 1 & 1 \\
1 & -1 & -3 & -1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 2+t & 4+2 t \\
1 & 1 & -1 \\
-2 & -2+t & 2+2 t
\end{array}\right)
$$

By multiplying column vectors from the left with matrices, view A as a linear map from \mathbb{R}^{4} to \mathbb{R}^{3}, and B as a linear map from \mathbb{R}^{3} to \mathbb{R}^{4}.
(1) Determine the dimensions of the kernel $\operatorname{Ker} A$ of A and the image $\operatorname{Im} B$ of B.
(2) Determine the dimension of the subspace $\operatorname{Ker} A+\operatorname{Im} B$ of \mathbb{R}^{4}.
(3) Determine the set of t for which $\operatorname{Ker} A=\operatorname{Im} B$.

2 For an integer $n \geq 2$, let A be a degree n symmetric matrix and $b \in \mathbb{R}^{n}$. Let $\langle\cdot, \cdot\rangle$ be the canonical inner product on \mathbb{R}^{n} and f the function on \mathbb{R}^{n} given by

$$
f(x)=\frac{1}{2}\langle A x, x\rangle-\langle b, x\rangle \quad\left(x \in \mathbb{R}^{n}\right)
$$

(1) Show that if f has an extremum at the point $x^{*} \in \mathbb{R}^{n}$, then $A x^{*}=b$.
(2) Show that if all eigenvalues of A are positive, then f has exactly one minimum.

3 Answer the following questions:
(1) Find the minima and maxima of the function $f(x, y)=x y$ on the set of real numbers x, y satisfying $x^{2}+x y+y^{2}-1=0$.
(2) Find the Taylor series of the function $f(x)=\sqrt{1+\frac{1}{x}}$ at $x=1$ up to the term $(x-1)^{2}$.

4 Answer the following questions:
(1) Use integration by parts to show that for $q>p>0$,

$$
\left|\int_{p}^{q} \frac{\sin x}{x} d x\right| \leq \frac{2}{p} .
$$

(2) Show that the improper integral

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x
$$

converges.
(3) Determine if the improper integral

$$
\int_{0}^{\infty} \frac{|\sin x|}{x} d x
$$

converges. Give a reason.

