Entrance Examination for the Ph. D. Program Graduate School of Mathematics Nagoya University 2012 Admission

Part 2 of 2

Tuesday, February 7, 2012, 13:00 p.m. ~ 16:00 p.m.

Note:

- 1. Please do not turn pages until told to do so.
- 2. The problem sheet consists of the cover page and 4 single-sided pages. After the exam has begun, please first confirm that the number of pages and their printing and order are correct. Please report any problem immediately.
- 3. There are a total of 4 problems labeled $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$, respectively. Please answer all 4 problems.
- 4. The answering sheet consists of 4 single-sided pages. Please **confirm the** number of pages, and please do not remove the staple.
- 5. Please write the answers to problems $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ on pages $\boxed{1}$, $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$ of the answering sheet, respectively.
- 6. Please write name and application number in the space provided on each of the 4 pages in the answering sheet .
- 7. The back side of the 4 pages in the answering sheet may also be used. If used, please check the box at the lower right-hand corner on the front side.
- 8. If the answering sheet staple is torn, or if additional paper is needed for calculations, please notify the exam proctor.
- 9. After the exam has ended, please hand in the 4 page answering sheet. The problem sheet and any additional sheets used for calculations may be taken home.

Notation:

The symbols \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the sets of integers, rational numbers, real numbers, and complex numbers, respectively.

- igl(1) For integers $n \geq 2$, let $M_n(\mathbb{C})$ denote the set of all complex $n \times n$ -matrices. Please answer the following questions.
 - (1) Let $D \in M_n(\mathbb{C})$ be a fixed diagonal matrix whose diagonal entries are pairwise distinct. Show that if $X \in M_n(\mathbb{C})$ satisfies DX = XD, then X is a diagonal matrix.
 - (2) Let $A \in M_n(\mathbb{C})$ have n pairwise distinct eigenvalues and let $m \geq 2$ be an integer. Find the number of solutions $X \in M_n(\mathbb{C})$ to the equation $X^m = A$.

 $[\mathbf{2}]$

For a fixed positive real number a, let f(x,y) be the function on \mathbb{R}^2 defined by

$$f(x,y) = \begin{cases} (x^2 + y^2)^a \sin \frac{1}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Please answer the following questions.

- (1) Show that f(x, y) is continuous at (0, 0).
- (2) Find all a for which the partial derivatives $f_x(0,0)$ and $f_y(0,0)$ exist. For all such a, find the value of the partial derivative $f_x(0,0)$.
- (3) Find all a for which the function f(x,y) is of class C^1 on \mathbb{R}^2 .

(3) Let $D = \{z \in \mathbb{C} \mid |z| < 1\}$ be the open unit disc in the complex plane, and let f(z) be the following power series of the complex variable z:

$$f(z) = z + z^2 + z^4 + z^8 + \dots + z^{2^n} + \dots$$

Please answer the following questions.

- (1) Show that the radius of convergence of f(z) is equal to 1.
- (2) By considering the limit $\lim_{x \to 1^-} f(x)$ as 0 < x < 1 approaches 1 from the left, show that there does not exist a holomorphic function g(z) defined on a neighborhood U of z = 1 such that f(z) = g(z) for all $z \in U \cap D$.
- (3) Let a be a complex number whose absolute value is equal to 1. Show that there does not exist a holomorphic function g(z) defined on a neighborhood V of z=a such that f(z)=g(z) for all $z\in V\cap D$.

(Hint: If k, m are positive integers and $z = e^{2\pi i k/2^m}$, then $z^{2^n} = 1$ for all $n \ge m$.)

- (4
- Let X be a set and let $f: X \to X$ be a map. If C is a subset of X, then f(C) denotes the image of C by f. Decide if each of the following statements is true or false. If true, then please give a proof. If false, then please give a counterexample.
 - (1) If $f \circ f = f$, then f is the identity map. Here, $f \circ f$ denotes the composition of the map f with itself.
 - (2) If there exists a map $g: X \to X$ such that $g \circ f$ is the identity map, then also $f \circ g$ is the identity map. Here, $f \circ g$ and $g \circ f$ denote the composite maps.
 - (3) If A and B are subsets of X with the property that $f(A) \subset A$ and $f(B) \subset B$, then $f(A \cap B) \subset A \cap B$.
 - (4) If A and B are subsets of X with the property that $f(A) \supset A$ and $f(B) \supset B$, then $f(A \cap B) \supset A \cap B$.