1 Let V be a finite dimensional complex vector space, let $f: V \rightarrow V$ and $g: V \rightarrow V$ be linear maps, and assume that g is a bijection and that the identity $g \circ f \circ g^{-1} \circ f=\mathrm{id}_{V}$ holds. Here id_{V} is the identity map of V. Please answer the following questions.
(1) Show that f is a bijection.
(2) Suppose that λ is an eigenvalue of f. Show that λ is non-zero and that λ^{-1} is an eigenvalue of f.
(3) Suppose that $\operatorname{dim} V=3$ and that f has an eigenvalue $\mu \neq \pm 1$. Find the Jordan canonical form of f. In addition, find the matrix that represents g with respect to the basis for V determined by the Jordan canonical form of f.

2 Let $f(x, y)=x^{3}+y^{3}-3 x y(x, y \in \mathbb{R})$, and let C be the planar curve defined by the equation $f(x, y)=0$. Please answer the following questions.
(1) Find the parametrization of C with respect to the parameter t given by the intersection of C and the line $y=t x$.
(2) Find the area of the region enclosed by the part of C that corresponds to the parameter values $0 \leq t<\infty$. (This region is equal to the bounded connected component of the complement of C.)

Hint: The area of the region enclosed by the closed curve C_{0} oriented counterclockwise is given by the line integral $\int_{C_{0}} x d y=-\int_{C_{0}} y d x$.

3 Please answer the following questions:
(1) Let $\zeta \leq 0$ be a real number and consider the meromorphic function

$$
f(z)=\frac{\exp (-i \zeta z)}{1+z^{2}}, \quad z \in \mathbb{C}
$$

Let C be the closed path that consists of the interval $C_{1}=[-R, R]$ in the real axis and the half-circle $C_{2}=\left\{R e^{i \theta} \mid 0 \leq \theta \leq \pi\right\}$. The path C is given the counter-clockwise orientation and it is assumed that $R>1$. Show that

$$
\int_{C} f(z) d z=\pi \exp (\zeta)
$$

(2) Show that it $\zeta \leq 0$, then $\int_{-\infty}^{\infty} \frac{\exp (-i \zeta t)}{1+t^{2}} d t=\pi \exp (\zeta)$.
(3) Find the value of $\int_{-\infty}^{\infty} \frac{\exp (-i \zeta t)}{1+t^{2}} d t$ for $\zeta>0$.

4 Let $\left\|\|: \mathbb{R}^{2} \rightarrow[0, \infty)\right.$ be the standard length function. Please answer the following questions.
(1) Show that the image by $\left\|\|\right.$ of an open subset of \mathbb{R}^{2} is an open subset of $[0, \infty)$.
(2) Show that the image by $\left\|\|\right.$ of a closed subset of \mathbb{R}^{2} is a closed subset of $[0, \infty)$.

