- **1** Let V be a finite dimensional complex vector space, let $f: V \to V$ and $g: V \to V$ be linear maps, and assume that g is a bijection and that the identity $g \circ f \circ g^{-1} \circ f = \mathrm{id}_V$ holds. Here id_V is the identity map of V. Please answer the following questions.
 - (1) Show that f is a bijection.
 - (2) Suppose that λ is an eigenvalue of f. Show that λ is non-zero and that λ^{-1} is an eigenvalue of f.
 - (3) Suppose that dim V=3 and that f has an eigenvalue $\mu \neq \pm 1$. Find the Jordan canonical form of f. In addition, find the matrix that represents g with respect to the basis for V determined by the Jordan canonical form of f.

- **2** Let $f(x,y) = x^3 + y^3 3xy$ $(x,y \in \mathbb{R})$, and let C be the planar curve defined by the equation f(x,y) = 0. Please answer the following questions.
 - (1) Find the parametrization of C with respect to the parameter t given by the intersection of C and the line y = tx.
 - (2) Find the area of the region enclosed by the part of C that corresponds to the parameter values $0 \le t < \infty$. (This region is equal to the bounded connected component of the complement of C.)

Hint: The area of the region enclosed by the closed curve C_0 oriented counterclockwise is given by the line integral $\int_{C_0} x dy = -\int_{C_0} y dx$.

- $[\ 3\]$ Please answer the following questions:
 - (1) Let $\zeta \leq 0$ be a real number and consider the meromorphic function

$$f(z) = \frac{\exp(-i\zeta z)}{1+z^2}, \quad z \in \mathbb{C}.$$

Let C be the closed path that consists of the interval $C_1 = [-R, R]$ in the real axis and the half-circle $C_2 = \{Re^{i\theta} \mid 0 \le \theta \le \pi\}$. The path C is given the counter-clockwise orientation and it is assumed that R > 1. Show that

$$\int_C f(z)dz = \pi \exp(\zeta).$$

- (2) Show that it $\zeta \leq 0$, then $\int_{-\infty}^{\infty} \frac{\exp(-i\zeta t)}{1+t^2} dt = \pi \exp(\zeta)$.
- (3) Find the value of $\int_{-\infty}^{\infty} \frac{\exp(-i\zeta t)}{1+t^2} dt \text{ for } \zeta > 0.$

 $\overline{f 4}$

Let $\|\cdot\| : \mathbb{R}^2 \to [0, \infty)$ be the standard length function. Please answer the following questions.

- (1) Show that the image by $\| \|$ of an open subset of \mathbb{R}^2 is an open subset of $[0, \infty)$.
- (2) Show that the image by $\| \quad \|$ of a closed subset of \mathbb{R}^2 is a closed subset of $[0, \infty)$.

(July 23rd, 2011) (The End)