(1) Let $V \subset \mathbb{R}^{4}$ be the subspace spanned by the vectors $\left(\begin{array}{l}2 \\ 0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 2\end{array}\right)$, and let $W_{t} \subset \mathbb{R}^{4}$ be the subspace spanned by the vectors $\left(\begin{array}{c}t+1 \\ t-1 \\ t+1 \\ t-1\end{array}\right),\left(\begin{array}{c}t+2 \\ t \\ t+1 \\ t+1\end{array}\right),\left(\begin{array}{c}t+3 \\ t+1 \\ t+2 \\ t+1\end{array}\right)$. Here t is a real number. Please answer the following questions.
(1) Solve the system of linear equations

$$
\left(\begin{array}{llll}
a & b & c & d
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
0 & 1 \\
1 & 0 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
0 & 0
\end{array}\right)
$$

with respect to the real numbers a, b, c, d.
(2) Find a system of linear equations whose space of solutions is equal to V.
(3) Find a system of linear equations whose space of solutions is equal to W_{t}.
(4) Find a basis for the subspace $V \cap W_{t}$ and find its dimension.

2 Let $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be the complex linear map defined by $T(v)=A v$, where

$$
A=\left(\begin{array}{rrr}
-5 & 6 & 2 \\
-8 & 8 & 1 \\
8 & -6 & 1
\end{array}\right)
$$

Please answer the following questions.
(1) Find the eigenvalues and eigenvectors for T.
(2) Let $V_{\lambda} \subset \mathbb{C}^{3}$ be the eigenspace corresponding to the eigenvalue λ for T. Show that \mathbb{C}^{3} decomposes as the direct sum of the subspaces V_{λ}.
(3) Let $v_{\lambda} \in V_{\lambda}$ be the summand of $v \in \mathbb{C}^{3}$ corresponding to the eigenvalue λ, and let $p_{\lambda}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be the linear map defined by $p_{\lambda}(v)=v_{\lambda}$. For each eigenvalue λ, find the matrix that represents p_{λ} with respect to the standard basis of \mathbb{C}^{3}.

3 Please answer the following questions.
(1) Find the 4th order Taylor expansion at the origin and with respect to x, y of the two-variable function $\cos \left(\frac{x}{1+y^{2}}\right)$.
(2) Decide whether or not the function $f(x, y)=x^{2}+2 x^{2} y-x y^{2}(x, y \in \mathbb{R})$ has any extrema.
(3) Find the value of the integral

$$
\iint_{D} \frac{1}{1+\left(x^{2}+y^{2}\right)^{2}} d x d y
$$

where D is the planar region defined by

$$
D=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq y\right\}
$$

4 Let a, b, n be positive integers with $a<b$ and define

$$
S_{n}(a, b)=\frac{1}{a n+1}+\frac{1}{a n+2}+\cdots+\frac{1}{b n-1}+\frac{1}{b n} .
$$

Please answer the following questions.
(1) Show that $\log \frac{b n+1}{a n+1}<S_{n}(a, b)<\log \frac{b}{a}$.
(2) Find the value of $S(a, b)=\lim _{n \rightarrow \infty} S_{n}(a, b)$.
(3) With $S(a, b)$ as in (2), decide whether the series

$$
\sum_{k=1}^{\infty} S\left(k^{2}, k^{2}+1\right)
$$

converges or diverges.

