1 Let V be a complex vector space of dimension n, let $I: V \rightarrow V$ be the identity map, and let $O: V \rightarrow V$ be the zero map. Please answer the following problems.
(1) Let $p, q: V \rightarrow V$ be linear maps that satisfy

$$
\begin{gathered}
p+q=I \\
p^{2}=p, q^{2}=q .
\end{gathered}
$$

Show that

$$
p q=q p=O .
$$

Show, in addition, that V is the direct sum of the subspaces $U=\operatorname{ker}(p-I)$ and $W=\operatorname{ker}(q-I)$.
(2) Suppose that the linear map $f: V \rightarrow V$ is diagonalizable, but that f only has two different eigenvalues α and β. Show that there exists p, q that satisfy the conditions in (1) such that $f=\alpha p+\beta q$.

2 Let A be a real symmetric $n \times n$ matrix all of whose eigenvalues are positive, and let Q_{A} be the function defined by

$$
Q_{A}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1} \ldots x_{n}\right) A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) .
$$

Given a real number α, consider the improper integral

$$
\int_{0<x_{1}^{2}+\cdots+x_{n}^{2} \leq 1} \frac{Q_{A}\left(x_{1}, \ldots, x_{n}\right)}{\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{\frac{\alpha}{2}}} d x_{1} \cdots d x_{n}
$$

Please answer the following problems.
(1) For $n=2$ and $A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$, determine all α for which the improper integral above converges and find the value of the integral.
(2) For general n, determine all α for which the improper integral above converges.

3 Let $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ be a sequence of non-zero complex numbers such that

$$
\sum_{n=1}^{\infty} \frac{1}{\left|\alpha_{n}\right|^{2}}<\infty
$$

Please answer the following problems.
(1) Show that the sequence $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ has no accumulation point in the complex plane.
(2) Show that if $|z|<\frac{1}{3}$, then

$$
|\log (1+z)-z| \leq 2|z|^{2}
$$

Here $\log (1+z)$ is the principal value of the logarithm.
(3) Show that for all $z \in \mathbb{C}$,

$$
f(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{\alpha_{n}}\right) e^{\frac{z}{\alpha_{n}}}
$$

converges, and that this defines a holomorphic function on all of \mathbb{C}.

4 Please answer the following problems.
(1) Let x be a real number. Show that the double limit

$$
\lim _{m \rightarrow \infty}\left(\lim _{n \rightarrow \infty}(\cos (\pi m!x))^{2 n}\right)
$$

exists.
(2) Let $f(x)$ be a real valued function defined on \mathbb{R}. State the $\epsilon-\delta$ definition of what it means for $f(x)$ not to be continuous at $x=a$.
(3) Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(x)=\lim _{m \rightarrow \infty}\left(\lim _{n \rightarrow \infty}(\cos (\pi m!x))^{2 n}\right)
$$

Using the $\epsilon-\delta$ definition of continuity, decide whether or not $g(x)$ is continuous on all of \mathbb{R}.

