(1) Let $V \subset \mathbb{R}^{4}$ be the subspace generated by the vectors

$$
\left(\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right), \quad\left(\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right)
$$

and for every real number t, let $W \subset \mathbb{R}^{4}$ be the subspace generated by the three vectors

$$
\left(\begin{array}{c}
t+4 \\
t \\
t+2 \\
t
\end{array}\right), \quad\left(\begin{array}{c}
t+3 \\
t \\
t+1 \\
t+1
\end{array}\right), \quad\left(\begin{array}{c}
t+2 \\
t \\
t+2 \\
t+2
\end{array}\right)
$$

Please answer the following problems.
(1) Find the dimension of W.
(2) Find the dimension of $V+W$.
(3) Find the dimension of $V \cap W$.

2 Consider the set

$$
V=\left\{\left.A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}, a+d=0\right\}
$$

as a real vector space with respect to matrix sum and scalar product. Please answer the following problems.
(1) Show that $\left\langle\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right\rangle$ is a basis of V.
(2) Let $A=\left(\begin{array}{rr}a & b \\ c & -a\end{array}\right)$ be an element of V. Show that the formula

$$
F_{A}(X)=A X-X A
$$

defines a linear map $F_{A}: V \rightarrow V$. In addition, find the matrix that represents F_{A} with respect to the basis in (1).
(3) For $A=\left(\begin{array}{rr}1 & 3 \\ 1 & -1\end{array}\right)$, find the eigenvalues and eigenvectors of F_{A}.

3 Please answer the following problems.
(1) Find the value of the double integral

$$
\int_{D} x y d x d y
$$

where $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq 0, y \geq 0, \sqrt{x}+\sqrt{y} \leq 1\right\}$.
(2) Let $z=f(x, y)$ be the real valued function of class C^{1} defined implicity by the equation

$$
x^{2} y+y z+z^{3} x=3
$$

on the open disc of radius $\frac{1}{2}$ centered at $(1,1)$. Find the partial derivatives

$$
\frac{\partial f}{\partial x}(1,1), \quad \frac{\partial f}{\partial y}(1,1)
$$

of $f(x, y)$ at $(x, y)=(1,1)$.
(3) Find the Taylor expansion of the function $g(x)=\frac{1}{\cos x}$ to the 4th order around $x=0$.

4 Let a be a real number and let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x, y)=x y+a y^{2}-x^{3} .
$$

Find the maximum value of $f(x, y)$ on \mathbb{R}^{2} and find the point(s) where this maximum value is attained.

