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Let V C R* be the subspace generated by the vectors

1 1
-1 -1

1]’ -1’
-1 1

and for every real number ¢, let W C R* be the subspace generated by the three

vectors

t+4 t+3 t+2
t t t
t+21’ t+11]’ t+2
t t+1 t+2

Please answer the following problems.

(1) Find the dimension of W.

(2) Find the dimension of V + W.

(3) Find the dimension of V N WV.
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Counsider the set

V:{A:<a2>|maadeRa+d:0}
C

as a real vector space with respect to matrix sum and scalar product. Please answer

the following problems.

1 1
(1) Show that ( 0 : 0 : 00 ) is a basis of V.
0 -1 0 0 1 0

a b

(2) Let A= <c 4

) be an element of V. Show that the formula

Fa(X)=AX — XA

defines a linear map F4: V — V. In addition, find the matrix that represents

F4 with respect to the basis in (1).

1 3
1 -1

(3) For A= (

) , find the eigenvalues and eigenvectors of Fy.
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Please answer the following problems.

(1)

Find the value of the double integral

/ xydxdy,
D

where D = {(z,y) e R* |2 >0, y >0, Vo +/y < 1}.

Let 2z = f(z,y) be the real valued function of class C'! defined implicity by the

equation

2y +yz+22r =3

1
on the open disc of radius 5 centered at (1,1). Find the partial derivatives

af af
%(171)7 a_y(lal)

of f(z,y) at (z,y) = (1,1).

Find the Taylor expansion of the function g(z) = to the 4th order around

CcosS
z =0.
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Let a be a real number and let f: R? — R be the function defined by

f(z,y) =2y +ay® — 2°.

Find the maximum value of f(z,y) on R? and find the point(s) where this maximum

value is attained.
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