1 Let V be a \mathbb{C}-vector space of finite dimension n, and let $f: V \rightarrow V$ be a linear map for which there exists an integer $k \geq 1$ such that $f^{k}=0$. Please answer the following questions.
(1) Show that 0 is the only eigenvalue of f.
(2) For $n=3$, what is the Jordan normal form of f ?
(3) Show that $I_{V}+f$ is a bijection. Here I_{V} denotes the identity map of V.

2 Let $u(x, y)$ be a real function of class C^{2} on \mathbb{R}^{2} that satisfies

$$
\begin{gathered}
u(x+m, y+n)=u(x, y) \quad\left(\forall(m, n) \in \mathbb{Z}^{2}\right), \\
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 .
\end{gathered}
$$

Please answer the following questions.
(1) Show that $u(x, y)$ is a bounded function on \mathbb{R}^{2}.
(2) Let $v(x, y)$ be the real function on \mathbb{R}^{2} defined by

$$
v(x, y)=-\int_{0}^{x} \frac{\partial u}{\partial y}(s, y) d s+\int_{0}^{y} \frac{\partial u}{\partial x}(0, t) d t
$$

Show that $v(x, y)$ is of class C^{1} and satisfies

$$
\left(-\frac{\partial u}{\partial y}(x, y), \frac{\partial u}{\partial x}(x, y)\right)=\left(\frac{\partial v}{\partial x}(x, y), \frac{\partial v}{\partial y}(x, y)\right) .
$$

(3) Let z be a complex number with real part x and imaginary part y. Let $v(x, y)$ be the function from (2) and define

$$
f(z)=u(x, y)+i v(x, y)
$$

Show that $f(z)$ is a holomorphic function on all of \mathbb{C}.
(4) Show that $f(z)$ is a constant function and conclude that also $u(x, y)$ is a constant function.

3 In the complex plane, let C_{ρ} the upper semi-circle of radius $\rho>0$,

$$
C_{\rho}=\left\{\rho e^{i \theta} \mid 0 \leq \theta \leq \pi\right\}
$$

and let C_{ρ} be given the counter-clockwise orientation. Let $f(z)$ be the meromorphic function on \mathbb{C} defined by

$$
f(z)=\frac{e^{3 i z}-3 e^{i z}}{z^{3}} .
$$

Please answer the following questions.
(1) Fix $r>0$. For $R>r$, let γ_{R} be the oriented closed curve comprised of the following four curve segments oriented as indicated.
$\gamma_{1, R}=[r, R]($ from r to $R)$,
$\gamma_{2, R}=C_{R}($ from R to $-R)$,
$\gamma_{3, R}=[-R,-r]($ from $-R$ to $-r)$,
$\gamma_{4, R}=C_{r}$ (with the opposite orientation from $-r$ to r)
Evaluate the complex line integral

$$
\int_{\gamma_{R}} f(z) d z .
$$

(2) For $r>0$, show the equality

$$
\int_{r}^{\infty} \frac{\sin ^{3} x}{x^{3}} d x=\frac{i}{8} \int_{C_{r}} f(z) d z
$$

where the integral on the left-hand side is the improper integral.
(3) Evaluate the improper integral

$$
\int_{0}^{\infty} \frac{\sin ^{3} x}{x^{3}} d x
$$

4 Let X and Y be sets, and let $F: X \rightarrow Y$ be a map. Please answer the following questions.
(1) For subsets $A \subset X$ and $B \subset Y$, let

$$
F(A)=\{F(x) \mid x \in A\}, F^{-1}(B)=\{x \in X \mid F(x) \in B\} .
$$

Decide if the following assertions (a)-(b) are true or false. If true, give a proof; if false, give a counter-example.
(a) $F\left(A_{1} \cap A_{2}\right)=F\left(A_{1}\right) \cap F\left(A_{2}\right)$.
(b) $F^{-1}\left(B_{1} \cap B_{2}\right)=F^{-1}\left(B_{1}\right) \cap F^{-1}\left(B_{2}\right)$.
(2) If X is not the empty set, and if $F: X \rightarrow Y$ is injective, show that there exists a surjective map from Y to X.

