1 Let A be the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & -2 & -1 \\
2 & 1 & -2 \\
3 & -1 & 1
\end{array}\right)
$$

and let $f_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be the linear map defined by A. Please answer the following questions.
(1) Find the dimension of the image $U=f_{A}\left(\mathbb{R}^{3}\right)$. Show your work.
(2) Let (\mathbf{x}, \mathbf{u}) denote the inner product of \mathbf{x} and \mathbf{u} in \mathbb{R}^{4}. Find a basis of the subspace $U^{\perp}=\left\{\mathbf{x} \in \mathbb{R}^{4} \mid(\mathbf{x}, \mathbf{u})=0(\forall \mathbf{u} \in U)\right\}$.
(3) For given real numbers a, b, define $\mathbf{c}=\left(\begin{array}{c}1 \\ a \\ -b \\ 1\end{array}\right)$ and $\mathbf{d}=\left(\begin{array}{c}a \\ 0 \\ b-3 a \\ 2\end{array}\right)$. Find all a, b such that U, \mathbf{c}, and \mathbf{d} span \mathbb{R}^{4}.

2 In this problem, all matrices and vectors have real entries. The norm of the vector \mathbf{v} is denoted by $\|\mathbf{v}\|$. Please answer the questions below.
(1) Find all eigenvalues and eigenvectors of the following matrix. Eigenvectors should be given as unit vectors with non-negative first component.

$$
A=\left(\begin{array}{lll}
3 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 5
\end{array}\right)
$$

(2) Show that if $\mathbf{x} \in \mathbb{R}^{3}$ and $\mathbf{x} \neq \mathbf{0}$, then $A \mathbf{x} \neq \mathbf{0}$.
(3) Let $\lambda_{1}, \lambda_{2}, \lambda_{3}\left(\lambda_{1}>\lambda_{2}>\lambda_{3}\right)$ be the eigenvalues and $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ the corresponding eigenvectors found in (1), and for $\mathbf{x} \neq \mathbf{0}$, let

$$
F(\mathrm{x})=\frac{A \mathrm{x}}{\|A \mathbf{x}\|}
$$

Given $a_{1}, a_{2}, a_{3} \in \mathbb{R} \backslash\{0\}$, let $\left\{\mathbf{x}_{n}\right\}_{n=0}^{\infty}$ be the sequence of vectors recursively defined by

$$
\begin{gathered}
\mathbf{x}_{0}=a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+a_{3} \mathbf{e}_{3} \\
\mathbf{x}_{n+1}=F\left(\mathbf{x}_{n}\right) \quad(n \geq 0) .
\end{gathered}
$$

Express the coefficients in writing \mathbf{x}_{n} as a linear combination of $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ in terms of a_{1}, a_{2}, a_{3}.
(4) Show that the limit $\lim _{n \rightarrow \infty} \mathbf{x}_{n}$ of the sequence $\left\{\mathbf{x}_{n}\right\}_{n=0}^{\infty}$ in (3) exists and is an eigenvector for A.

3 Please answer the following questions.
(1) Find the 3rd order Taylor expansion at the origin and with respect to x, y of the two-variable function $(1+x \sin y)^{-1}$.
(2) Let $f(x, y, z)=\frac{3}{1+x^{2}} \log \left(1+e^{y}+z^{2}\right)-y \quad(x, y, z \in \mathbb{R})$, let a be a real number, and define

$$
F(t)=f\left(a \cos t, a \sin t, t^{2}\right) \quad(t \in \mathbb{R})
$$

Find all a for which $F^{\prime}(0)=0$.
(3) Find the value of the double integral

$$
\iint_{D} \frac{|x|}{\left(x^{2}+y+1\right)^{2}} d x d y
$$

over the region $D=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq y \leq x^{2} \leq 1\right\}$ in the plane.

4 Let $f(x, y)$ be the function defined on \mathbb{R}^{2} by the formula

$$
f(x, y)=e^{-x^{2}-y^{2}}(1-x-y) .
$$

Please answer the following questions.
(1) A critical point for $f(x, y)$ is a point (a, b) such that $\frac{\partial f}{\partial x}(a, b)=0$ and $\frac{\partial f}{\partial y}(a, b)=0$. Find all critical points for $f(x, y)$.
(2) If $R>0$, and if $D_{R}=\left\{(x, y) \mid x^{2}+y^{2} \leq R^{2}\right\}$ is the closed disc of radius \mathbb{R}, then show that the maximum value and minimum value of $f(x, y)$ on D_{R} exist. Show also that for R sufficiently large, these also the maximum value and minimum value of $f(x, y)$ on \mathbb{R}^{2}.
(3) Find the maximum value and minumim value of $f(x, y)$ on \mathbb{R}^{2} and find the points where these are attained.

