(MC examination 2010 – 2nd Session, Afternoon)

- **1**) Let V be a linear space of dimension n over \mathbb{C} . We assume that the linear transformation f over V has distinct eigenvalues $\alpha_1, \alpha_2, \ldots, \alpha_n$, with respective eigenspaces W_1, W_2, \ldots, W_n . I being the identity transformation over V, we define the linear transformations $f_j = f \alpha_j I$ ($j = 1, 2, \ldots, n$). The composition of all these transformations except f_j is $g_j = f_1 \cdots f_{j-1} f_{j+1} \cdots f_n$. Answer the following questions:
 - (1) Prove that the restrictions of f_j to each of the W_k 's (k = 1, 2, ..., n) are linear transformations over W_k .
 - (2) Prove that $g_j \neq 0$.
 - (3) Let $\operatorname{Im} g_j$ be the image of g_j . Prove that $\operatorname{Im} g_j \subset W_j$.
 - (4) Prove that $\operatorname{Im} g_j = W_j$.

2 Let f(x) be a continuous function over \mathbb{R} , null outside of a compact set $K \subset \mathbb{R}$, and $\varphi(x)$ be a positive continuous function over \mathbb{R} , such that

$$\int_{-\infty}^{\infty} \varphi(x) \, dx = 1.$$

For some $t \in \mathbb{R}$ $(t \neq 0)$, we define

$$g_t(x) = \int_{-\infty}^{\infty} \varphi_t(x-y) f(y) \, dy$$
 and $\varphi_t(x) = \frac{1}{|t|} \varphi\left(\frac{x}{t}\right).$

Answer the following questions:

(1) Show that
$$f(x) = \int_{-\infty}^{\infty} \varphi_t(x-y) f(x) \, dy$$
.

(2) Show that, for any $\delta > 0$,

$$\lim_{t \to 0} \int_{|x| \ge \delta} \varphi_t(x) \, dx = 0.$$

- (3) f(x) is bounded over \mathbb{R} , and uniformly continuous. Explain why it is so.
- (4) Let $||g_t f|| = \sup_{x \in \mathbb{R}} |g_t(x) f(x)|$. Prove that

$$\lim_{t \to 0} \|g_t - f\| = 0.$$

(February 9th, 2010)

 $\left(\mathbf{3}\right)$

Let Γ be the circle in the complex plane of center at the origin, and radius 1. It is directed counter-clockwise. Answer the following questions:

(1) When α is a complex number such that $|\alpha| < 1$, calculate the integral

$$\int_{\Gamma} \frac{\log(2+z)}{(z-\alpha)(z-\alpha^{-1})} \, dz.$$

For $z \neq 0$, we select the value of $\log z = \log |z| + i \arg z$ such that $-\pi < \arg z \leq \pi$.

(2) Representing Γ as $z = e^{i\theta}$ $(0 \le \theta \le 2\pi)$, calculate the integral

$$\int_0^{2\pi} \frac{\log(5+4\cos\theta)}{5+4\cos\theta} \, d\theta.$$

Answer the following questions:

- (1) Let V and W be 2 sets, and f : V → W and g : W → V functions between them. We assume that their composition g ∘ f : V → V is the identity function. For each of the following statements, prove the statement when true, or give a counter-example when false:
 - (a) f is injective.
 - (b) f is surjective.
 - (c) g is injective.
 - (d) g is surjective.
- (2) For any non-empty subset E of R, k ∈ R is an upper bound of E when, for any x ∈ E, the inequality x ≤ k is true. The smallest upper bound of E is called its least upper bound. For any non-empty subset M of R, we define M' = {x + 1 | x ∈ M}. For each of the following statements, prove the statement when true, or give a counter-example when false:
 - (a) When α is an upper bound of M, $\alpha + 1$ is an upper bound of M'.
 - (b) When α is the least upper bound of M, α + 1 is the least upper bound of M'.