1 Let V be a linear space of dimension n over \mathbb{C}. We assume that the linear transformation f over V has distinct eigenvalues $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, with respective eigenspaces $W_{1}, W_{2}, \ldots, W_{n} . I$ being the identity transformation over V, we define the linear transformations $f_{j}=f-\alpha_{j} I \quad(j=1,2, \ldots, n)$. The composition of all these transformations except f_{j} is $g_{j}=f_{1} \cdots f_{j-1} f_{j+1} \cdots f_{n}$.

Answer the following questions:
(1) Prove that the restrictions of f_{j} to each of the W_{k} 's $(k=1,2, \ldots, n)$ are linear transformations over W_{k}.
(2) Prove that $g_{j} \neq 0$.
(3) Let $\operatorname{Im} g_{j}$ be the image of g_{j}. Prove that $\operatorname{Im} g_{j} \subset W_{j}$.
(4) Prove that $\operatorname{Im} g_{j}=W_{j}$.

2 Let $f(x)$ be a continuous function over \mathbb{R}, null outside of a compact set $K \subset \mathbb{R}$, and $\varphi(x)$ be a positive continuous function over \mathbb{R}, such that

$$
\int_{-\infty}^{\infty} \varphi(x) d x=1
$$

For some $t \in \mathbb{R}(t \neq 0)$, we define

$$
g_{t}(x)=\int_{-\infty}^{\infty} \varphi_{t}(x-y) f(y) d y \quad \text { and } \quad \varphi_{t}(x)=\frac{1}{|t|} \varphi\left(\frac{x}{t}\right) .
$$

Answer the following questions:
(1) Show that $f(x)=\int_{-\infty}^{\infty} \varphi_{t}(x-y) f(x) d y$.
(2) Show that, for any $\delta>0$,

$$
\lim _{t \rightarrow 0} \int_{|x| \geq \delta} \varphi_{t}(x) d x=0 .
$$

(3) $f(x)$ is bounded over \mathbb{R}, and uniformly continuous. Explain why it is so.
(4) Let $\left\|g_{t}-f\right\|=\sup _{x \in \mathbb{R}}\left|g_{t}(x)-f(x)\right|$. Prove that

$$
\lim _{t \rightarrow 0}\left\|g_{t}-f\right\|=0
$$

3 Let Γ be the circle in the complex plane of center at the origin, and radius 1. It is directed counter-clockwise. Answer the following questions:
(1) When α is a complex number such that $|\alpha|<1$, calculate the integral

$$
\int_{\Gamma} \frac{\log (2+z)}{(z-\alpha)\left(z-\alpha^{-1}\right)} d z
$$

For $z \neq 0$, we select the value of $\log z=\log |z|+i \arg z$ such that $-\pi<\arg z \leq \pi$.
(2) Representing Γ as $z=e^{i \theta}(0 \leq \theta \leq 2 \pi)$, calculate the integral

$$
\int_{0}^{2 \pi} \frac{\log (5+4 \cos \theta)}{5+4 \cos \theta} d \theta
$$

4 Answer the following questions:
(1) Let V and W be 2 sets, and $f: V \rightarrow W$ and $g: W \rightarrow V$ functions between them. We assume that their composition $g \circ f: V \rightarrow V$ is the identity function. For each of the following statements, prove the statement when true, or give a counter-example when false:
(a) f is injective.
(b) f is surjective.
(c) g is injective.
(d) g is surjective.
(2) For any non-empty subset E of $\mathbb{R}, k \in \mathbb{R}$ is an upper bound of E when, for any $x \in E$, the inequality $x \leq k$ is true. The smallest upper bound of E is called its least upper bound. For any non-empty subset M of \mathbb{R}, we define $M^{\prime}=\{x+1 \mid x \in M\}$. For each of the following statements, prove the statement when true, or give a counter-example when false:
(a) When α is an upper bound of $M, \alpha+1$ is an upper bound of M^{\prime}.
(b) When α is the least upper bound of $M, \alpha+1$ is the least upper bound of M^{\prime}.

