1 With respect to the matrices

$$
A=\left(\begin{array}{ccccc}
1 & 2 & -1 & -2 & 2 \\
-1 & -2 & 2 & 3 & -2 \\
-1 & -2 & 0 & 1 & -2
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccccc}
1 & 3 & 2 & 0 & 3 \\
1 & 4 & 4 & 1 & 4
\end{array}\right)
$$

we define the linear maps $T_{A}: \mathbb{C}^{5} \rightarrow \mathbb{C}^{3}$ and $T_{B}: \mathbb{C}^{5} \rightarrow \mathbb{C}^{2}$ between complex linear spaces, such that $T_{A}(\boldsymbol{x})=A \boldsymbol{x}$ and $T_{B}(\boldsymbol{x})=B \boldsymbol{x}$. Here,

$$
\boldsymbol{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right) \in \mathbb{C}^{5}
$$

Their respective kernels are $V=\operatorname{Ker} T_{A}$ and $W=\operatorname{Ker} T_{B}$.
Answer the following questions:
(1) Calculate $\operatorname{dim} V$ and $\operatorname{dim} W$.
(2) For each of $V \cup W$ and $V+W$, decide whether it is a subspace of \mathbb{C}^{5}.
(3) For the subspaces found in (2), calculate their dimensions.

2 We define

$$
V=\left\{p+q x+r x^{2} \mid p, q, r \in \mathbb{R}\right\}
$$

as the linear space over \mathbb{R} composed of all real polynomials in x of degree 2 or less. With respect to $f=p+q x+r x^{2} \in V(p, q, r \in \mathbb{R})$, we define its norm as

$$
\|f\|=\sqrt{p^{2}+q^{2}+r^{2}} .
$$

We consider a linear transformation $T: V \rightarrow V$ such that, for some real number a, we have

$$
T(1)=1+x, \quad T(x)=-1+x^{2}, \quad T\left(1+a x-x^{2}\right)=0 .
$$

A is the representation matrix of T with respect to the basis $1, x, x^{2}$.
Answer the following questions:
(1) Calculate A.
(2) Find all the eigenvalues of A, and their respective eigenspaces.
(3) Using a, express a necessary and sufficient condition for A to be diagonalizable.
(4) We suppose that A is diagonalizable. $T^{n}: V \rightarrow V$ being $T: V \rightarrow V$ composed n times, find the dimension, as a subspace of V, of $W=\left\{f \in V \mid \lim _{n \rightarrow \infty}\left\|T^{n}(f)\right\|=0\right\}$.

3 Answer the following questions:
(1) Applying the Taylor theorem to $f(x)=\log (\cos x)$, prove the following inequality when $|x| \leq \frac{\pi}{4}$:

$$
\left|f(x)+\frac{x^{2}}{2}\right| \leq \frac{2}{3}|x|^{3} .
$$

(2) Let $f(x, y)$ be a function over \mathbb{R}^{2} of class C^{2}. The function

$$
g(x, t)=\int_{0}^{t} f(x, y) d y
$$

over \mathbb{R}^{2} is known to be of class C^{2}. Let $F(x)=g(x, x)$. Find the constants a, b, c such that the following equation is true:

$$
F^{\prime \prime}(x)=a f_{x}(x, x)+b f_{y}(x, x)+c g_{x x}(x, x) .
$$

(3) Calculate the following integral:

$$
\int_{0}^{\pi}\left(\int_{0}^{\sqrt{\pi^{2}-x^{2}}} \sin \sqrt{x^{2}+y^{2}} d y\right) d x
$$

4 We define the function $f(x, y)$ of two variables as

$$
f(x, y)=3 x^{4}+5 y^{3}-3 x^{2} y^{2}-6 y^{2} .
$$

Find the extrema of $f(x, y)$.

