1 Let V and W be finite dimension linear spaces over \mathbb{C}, and $f: V \rightarrow W$ a linear map. Answer the following questions:
(1) Show that, when f is surjective, there exists a linear map $g: W \rightarrow V$ such that the composition $f g$ of g and f is the identity on W.
(2) Show that, when f is injective, there exists a linear map $g: W \rightarrow V$ such that $g f$ is the identity on V.
(3) Show that, for any f, there exists a linear map $g: W \rightarrow V$ such that $f=f g f$ and $g=g f g$.
(4) Assume that g satisfies the equations of (3). Show that f is a bijection from $\operatorname{Im} g$ (the image of g) to $\operatorname{Im} f$ (the image of f).

2 We pose $U=\mathbb{R}^{2} \backslash\{(0,0)\}$, the plane minus the origin. The functions on U will be real-valued. We say that a function $h(x, y)$ on U is harmonic, if it is of class C^{2}, and satisfies $\frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}=0$ everywhere. Answer the following questions:
(1) For any continuous function $f(x, y)$ on U, prove the following equations:

$$
\begin{aligned}
& \int_{-r}^{r}\left\{f\left(\sqrt{r^{2}-y^{2}}, y\right)-f\left(-\sqrt{r^{2}-y^{2}}, y\right)\right\} d y=r \int_{0}^{2 \pi} f(r \cos \theta, r \sin \theta) \cos \theta d \theta \\
& \int_{-r}^{r}\left\{f\left(x, \sqrt{r^{2}-x^{2}}\right)-f\left(x,-\sqrt{r^{2}-x^{2}}\right)\right\} d x=r \int_{0}^{2 \pi} f(r \cos \theta, r \sin \theta) \sin \theta d \theta
\end{aligned}
$$

Here we assume $r>0$.
(2) For any function $g(x, y)$ of class C^{1} on U, prove the following equations:

$$
\begin{aligned}
\iint_{\varepsilon^{2} \leq x^{2}+y^{2} \leq r^{2}} \frac{\partial g}{\partial x}(x, y) d x d y & =r \int_{0}^{2 \pi} g(r \cos \theta, r \sin \theta) \cos \theta d \theta \\
& -\varepsilon \int_{0}^{2 \pi} g(\varepsilon \cos \theta, \varepsilon \sin \theta) \cos \theta d \theta \\
\iint_{\varepsilon^{2} \leq x^{2}+y^{2} \leq r^{2}} \frac{\partial g}{\partial y}(x, y) d x d y & =r \int_{0}^{2 \pi} g(r \cos \theta, r \sin \theta) \sin \theta d \theta \\
& -\varepsilon \int_{0}^{2 \pi} g(\varepsilon \cos \theta, \varepsilon \sin \theta) \sin \theta d \theta .
\end{aligned}
$$

Here we assume $0<\varepsilon<r$.
(3) For any harmonic function $h(x, y)$ on U , let $H(\rho, \theta)=h(\rho \cos \theta, \rho \sin \theta)$ and $F(\rho)=\rho \int_{0}^{2 \pi} \frac{\partial H}{\partial \rho}(\rho, \theta) d \theta$, for $\rho>0$. Show that $F(\rho)$ is constant.
(4) Find all the harmonic functions on U whose value only depends on the distance from the origin.

3 Let C_{r} be the upper half of the circle of radius $r>0$ in the complex plane:

$$
C_{r}=\left\{r e^{i \theta} \mid 0 \leq \theta \leq \pi\right\} .
$$

C_{r} is oriented counter-clockwise. Answer the following questions:
(1) Evaluate the limit

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{1+i z-e^{i z}}{z^{3}} d z
$$

(2) Show that any regular function $g(z)$ on \mathbb{C} satisfies the equation

$$
\lim _{\varepsilon \rightarrow 0} \int_{C_{\varepsilon}} g(z) d z=0 .
$$

Here we use the right limit, obtained by restricting ε to positive values.
(3) Using the right limit as in (2), evaluate

$$
\lim _{\varepsilon \rightarrow 0} \int_{C_{\varepsilon}} \frac{1+i z-e^{i z}}{z^{3}} d z
$$

(4) Evaluate the generalized integral

$$
\int_{0}^{\infty} \frac{x-\sin x}{x^{3}} d x
$$

4 Answer the following questions:
(1) For any topological space X, show that the following properties (a) and (b) are equivalent:
(a) X has a smallest non-empty closed set.
(b) X is not empty, and for any $\left\{U_{\lambda}\right\}_{\lambda \in \Lambda}$ open cover of X, there is a $\lambda \in \Lambda$ such that $X=U_{\lambda}$.
(2) Let X and Y be topological spaces, $f: X \rightarrow Y$ a continuous map between them. Show that if X satisfies the condition (a) above, then its image $f(X)$ is again a topological space that satisfies (a).

