1

With respect to a complex number a, we consider the matrix

$$A = \begin{pmatrix} -4 & 2 & -2 \\ -2 - a & 1 + a & -1 \\ 2 - a & -1 + a & 1 \end{pmatrix}.$$

Answer the following questions:

- (1) Find all the values of a such that rank A = 1.
- (2) When rank A = 1, find a regular matrix P such that $P^{-1}AP$ is diagonal.
- (3) Find all the values of a such that A cannot be diagonalized.

(MC examination 2010, Morning)

2 Let V be the linear space of polynomials of order 3 or less over \mathbb{R} :

$$V = \{ p + qx + rx^2 + sx^3 \mid p, q, r, s \in \mathbb{R} \}.$$

For any $f(x) \in V$, we define

$$T(f(x)) = \frac{1}{x-1} \int_{1}^{x} (t-1)f'(t) dt$$

Answer the following questions:

- (1) Show that the mapping T, which maps $f(x) \in V$ to T(f(x)), is a linear map from V to V.
- (2) Find the representation matrix of T, using $1, x, x^2, x^3$ as a basis for V.
- (3) Assuming $g(x) = p + qx + rx^2 + sx^3 \in V$ $(p, q, r, s \in \mathbb{R})$, find a necessary and sufficient condition on p, q, r, s so that there exists an $f(x) \in V$ such that T(f(x)) = g(x).
- (4) For some constant $k \in \mathbb{R}$, we fix $g(x) = 1 x + kx^2 3x^3 \in V$. Check whether T(f(x)) = g(x) admits a solution $f(x) \in V$. If there are solutions, find all such $f(x) \in V$.

3 Answer the following questions:

(1) For the 2-variable function $f(x, y) = e^{(x+y)\cos(x-y)}$, find the 2nd order polynomial p(x, y) such that

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-p(x,y)}{x^2+y^2}=0.$$

(2) Let g(x, y) be a function of class C^1 around (x, y) = (a, b), we define

$$c = g(a, b), \quad \xi = \frac{\partial g}{\partial x}(a, b), \quad \eta = \frac{\partial g}{\partial y}(a, b).$$

Let F(u, v, w) be a function of class C^1 around (u, v, w) = (a, b, c), we define

$$\alpha = \frac{\partial F}{\partial u}(a, b, c), \quad \beta = \frac{\partial F}{\partial v}(a, b, c), \quad \gamma = \frac{\partial F}{\partial w}(a, b, c).$$

Let $G(x, y) = (x, y, g(x, y))$ and $H(x, y) = (F \circ G)(x, y)$. Represent $\frac{\partial H}{\partial x}(a, b)$
and $\frac{\partial H}{\partial y}(a, b)$ using $\alpha, \beta, \gamma, \xi, \eta$. Here, $F \circ G$ is the composition of G and F .

(3) Evaluate the following integral:

$$\int_0^2 dy \int_{\sqrt{y}}^{\sqrt{2}} \exp\left(\frac{y}{x}\right) \, dx.$$

$[\mathbf{4}]$

Answer the following questions:

(1) For $\alpha > 0$ and $n = 1, 2, \ldots$, show that

$$\frac{1}{(n+1)^{\alpha}} \le \int_{n}^{n+1} \frac{dx}{x^{\alpha}}$$

- (2) Show that, when $\alpha > 1$, the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)^{\alpha}}$ converges.
- (3) Show that, when $\alpha \to \infty$,

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^{\alpha}} \to 0.$$

- (4) We assume that $\alpha > 1$, the sequence $\{a_n\}_{n=1}^{\infty}$ is such that $a_n > 0$ (n = 1, 2, ...), and the series $\sum_{n=1}^{\infty} a_n$ converges. Under those assumptions, show that both $\sum_{n=1}^{\infty} a_n^n$ and $\sum_{n=1}^{\infty} \left(a_n + \frac{1}{(n+1)^{\alpha}}\right)^n$ do converge.
- (5) Under the assumptions of (4), show that, when $\alpha \to \infty$,

$$\sum_{n=1}^{\infty} \left\{ \left(a_n + \frac{1}{(n+1)^{\alpha}} \right)^n - a_n^n \right\} \longrightarrow 0.$$