1 With respect to a complex number a, we consider the matrix

$$
A=\left(\begin{array}{ccc}
-4 & 2 & -2 \\
-2-a & 1+a & -1 \\
2-a & -1+a & 1
\end{array}\right)
$$

Answer the following questions:
(1) Find all the values of a such that $\operatorname{rank} A=1$.
(2) When $\operatorname{rank} A=1$, find a regular matrix P such that $P^{-1} A P$ is diagonal.
(3) Find all the values of a such that A cannot be diagonalized.

2 Let V be the linear space of polynomials of order 3 or less over \mathbb{R} :

$$
V=\left\{p+q x+r x^{2}+s x^{3} \mid p, q, r, s \in \mathbb{R}\right\} .
$$

For any $f(x) \in V$, we define

$$
T(f(x))=\frac{1}{x-1} \int_{1}^{x}(t-1) f^{\prime}(t) d t
$$

Answer the following questions:
(1) Show that the mapping T, which maps $f(x) \in V$ to $T(f(x))$, is a linear map from V to V.
(2) Find the representation matrix of T, using $1, x, x^{2}, x^{3}$ as a basis for V.
(3) Assuming $g(x)=p+q x+r x^{2}+s x^{3} \in V(p, q, r, s \in \mathbb{R})$, find a necessary and sufficient condition on p, q, r, s so that there exists an $f(x) \in V$ such that $T(f(x))=g(x)$.
(4) For some constant $k \in \mathbb{R}$, we fix $g(x)=1-x+k x^{2}-3 x^{3} \in V$. Check whether $T(f(x))=g(x)$ admits a solution $f(x) \in V$. If there are solutions, find all such $f(x) \in V$.

3 Answer the following questions:
(1) For the 2-variable function $f(x, y)=e^{(x+y) \cos (x-y)}$, find the 2nd order polynomial $p(x, y)$ such that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-p(x, y)}{x^{2}+y^{2}}=0
$$

(2) Let $g(x, y)$ be a function of class C^{1} around $(x, y)=(a, b)$, we define

$$
c=g(a, b), \quad \xi=\frac{\partial g}{\partial x}(a, b), \quad \eta=\frac{\partial g}{\partial y}(a, b) .
$$

Let $F(u, v, w)$ be a function of class C^{1} around $(u, v, w)=(a, b, c)$, we define

$$
\alpha=\frac{\partial F}{\partial u}(a, b, c), \quad \beta=\frac{\partial F}{\partial v}(a, b, c), \quad \gamma=\frac{\partial F}{\partial w}(a, b, c) .
$$

Let $G(x, y)=(x, y, g(x, y))$ and $H(x, y)=(F \circ G)(x, y)$. Represent $\frac{\partial H}{\partial x}(a, b)$ and $\frac{\partial H}{\partial y}(a, b)$ using $\alpha, \beta, \gamma, \xi, \eta$. Here, $F \circ G$ is the composition of G and F.
(3) Evaluate the following integral:

$$
\int_{0}^{2} d y \int_{\sqrt{y}}^{\sqrt{2}} \exp \left(\frac{y}{x}\right) d x
$$

4 Answer the following questions:
(1) For $\alpha>0$ and $n=1,2, \ldots$, show that

$$
\frac{1}{(n+1)^{\alpha}} \leq \int_{n}^{n+1} \frac{d x}{x^{\alpha}}
$$

(2) Show that, when $\alpha>1$, the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)^{\alpha}}$ converges.
(3) Show that, when $\alpha \rightarrow \infty$,

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1)^{\alpha}} \rightarrow 0
$$

(4) We assume that $\alpha>1$, the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is such that $a_{n}>0(n=1,2, \ldots)$, and the series $\sum_{n=1}^{\infty} a_{n}$ converges. Under those assumptions, show that both $\sum_{n=1}^{\infty} a_{n}^{n}$ and $\sum_{n=1}^{\infty}\left(a_{n}+\frac{1}{(n+1)^{\alpha}}\right)^{n}$ do converge.
(5) Under the assumptions of (4), show that, when $\alpha \rightarrow \infty$,

$$
\sum_{n=1}^{\infty}\left\{\left(a_{n}+\frac{1}{(n+1)^{\alpha}}\right)^{n}-a_{n}^{n}\right\} \longrightarrow 0
$$

