Crystal energy via charge in types A and C

Cristian Lenart and Anne Schilling

Department of Mathematics
SUNY Albany and UC Davis

FPSAC, August 2, 2012

and work joint with Naito, Sagaki, Shimozono (in progress)
Outline

Crystals

Energy function

Charge

Arbitrary type
Outline

Crystals

Energy function

Charge

Arbitrary type
A $U_q(g)$-crystal is a nonempty set B with maps

\[\text{wt}: B \rightarrow P\]
\[e_i, f_i: B \rightarrow B \cup \{\emptyset\} \quad \text{for all } i \in I\]

Write $b \xrightarrow{i} b'$ for $b' = f_i(b)$.
A $U_q(g)$-crystal is a nonempty set B with maps

$$\text{wt}: B \to P$$

$$e_i, f_i: B \to B \cup \{\emptyset\} \quad \text{for all } i \in I$$

Write $b \xrightarrow{i} b'$ for $b' = f_i(b)$
A $U_q(g)$-crystal is a nonempty set B with maps

\[\text{wt}: B \to P \]
\[e_i, f_i: B \to B \cup \{\emptyset\} \quad \text{for all } i \in I \]

Write $\bullet_i \over\rightarrow b \, \bullet$ for $b' = f_i(b)$
Kashiwara–Nakashima tableaux

embed $B(1^N) \hookrightarrow B(\lambda) \otimes |\lambda|$

Type A_r:

Example

Type A_3

- strictly increasing in columns
Kashiwara–Nakashima tableaux

\[\text{embed } B(1^N) \hookrightarrow B(\square) \otimes |\lambda| \]

Type \(A_r \):

\[
\begin{array}{c}
1 \quad 2 \quad \ldots \quad r - 1 \quad r \quad r + 1
\end{array}
\]

Example

Type \(A_3 \)

\[
\begin{array}{c}
1 \\
3 \\
4
\end{array} \quad \longleftrightarrow \quad
\begin{array}{c}
4 \\
3 \\
1
\end{array} \otimes
\begin{array}{c}
3 \\
1
\end{array}
\]

- strictly increasing in columns
Kashiwara–Nakashima tableaux

Embed $B(1^N) \hookrightarrow B([\square]) \otimes |\lambda|$

Type A_r:

Example

Type A_3

- strictly increasing in columns
Kashiwara–Nakashima tableaux

Embed $B(1^N) \hookrightarrow B(\lambda) \times |\lambda|$

Type C_r:

```
 1 1 → 2 2 → ... r − 1 r → −r r − 1 → ... 1 → −1
```

Example

Type C_3:

```
1
3
3
```

```
3 × 3 × 1
```

- alphabet $[\bar{r}] := \{1 < 2 < ... < r < \bar{r} < \bar{r} − 1 < ... < \bar{1}\}$
- strictly increasing in columns
- for column $b = b(k) \ldots b(1)$ there is no pair (z, \bar{z}) s.t.:

 $$z = b(p), \quad \bar{z} = b(q), \quad q − p \leq k − z.$$
Kashiwara–Nakashima tableaux

Type C_r:

$B(1^N) \hookrightarrow B(\square) \otimes |\lambda|$

Example

Type C_3

| alphabet $[\bar{r}] := \{1 < 2 < \ldots < r < \bar{r} < \bar{r-1} < \ldots < \bar{1}\}$ |
| strictly increasing in columns |
| for column $b = b(k) \ldots b(1)$ there is no pair (z, \bar{z}) s.t.: |
| $z = b(p), \quad \bar{z} = b(q), \quad q - p \leq k - z$. |
Kashiwara–Nakashima tableaux

embed $B(1^N) \hookrightarrow B(\square) \otimes |\lambda|$

Type C_r:

Example

Type C_3

- alphabet $[\overline{r}] := \{1 < 2 < \ldots < r < \overline{r} < \overline{r-1} < \ldots < \overline{1}\}$
- strictly increasing in columns
- for column $b = b(k) \ldots b(1)$ there is no pair (z, \overline{z}) s.t.:

 $z = b(p), \quad \overline{z} = b(q), \quad q - p \leq k - z$.
Kashiwara–Nakashima tableaux

embed $B(1^N) \hookrightarrow B(\square) \otimes |\lambda|$

Type C_r:

Example

- alphabet $[\overline{r}] := \{1 < 2 < \ldots < r < \overline{r} < \overline{r-1} < \ldots < \overline{1}\}$
- strictly increasing in columns
- for column $b = b(k) \ldots b(1)$ there is no pair (z, \overline{z}) s.t.:

 $z = b(p), \quad \overline{z} = b(q), \quad q - p \leq k - z$.
Kashiwara–Nakashima tableaux

eMBED $B(1^N) \hookrightarrow B([\square]) \otimes |\lambda|$

Type C_r:

Example

- alphabet $[\vec{r}] := \{1 < 2 < \ldots < r < \vec{r} < \vec{r} - 1 < \ldots < \vec{1}\}$
- strictly increasing in columns
- for column $b = b(k) \ldots b(1)$ there is no pair (z, \vec{z}) s.t.:

 $$z = b(p), \quad \vec{z} = b(q), \quad q - p \leq k - z.$$
Column KR crystals for types $A_n^{(1)}$ and $C_n^{(1)}$

Example

$B^{2,1}_{2,1}$ of type $A_3^{(1)}$
$B^{2,1}_{2,1}$ of type $C_2^{(1)}$
Outline

Crystals

Energy function

Charge

Arbitrary type
Energy function

\[B := B_\mu = B^{\mu_1,1} \otimes B^{\mu_2,1} \otimes \cdots, \] connected by \(f_0 \) arrows.

The energy \(D : B \to \mathbb{Z} \) originates from exactly solvable lattice models (computed via local energies and the combinatorial \(R \)-matrix).

Alternative construction (S., Tingley) as affine grading on \(B \):
- constant on classical components (\(f_0 \) arrows removed)
- increases by 1 along \(f_0 \) arrows which are not at the end of a 0-string (Demazure arrows)

Remark

In most cases, \(B \) is still connected upon removal of non-Demazure \(f_0 \) arrows.
\(\Rightarrow \) \(D \) is well-defined up to constant.
Notable exception: type \(C \).
Energy function

\[B := B_{\mu} = B^{\mu_1,1} \otimes B^{\mu_2,1} \otimes \cdots, \] connected by \(f_0 \) arrows.

The energy \(D : B \rightarrow \mathbb{Z} \) originates from exactly solvable lattice models (computed via local energies and the combinatorial \(R \)-matrix).

Alternative construction (S., Tingley) as affine grading on \(B \):

- constant on classical components (\(f_0 \) arrows removed)
- increases by 1 along \(f_0 \) arrows which are not at the end of a 0-string (Demazure arrows)

Remark

In most cases, \(B \) is still connected upon removal of non-Demazure \(f_0 \) arrows.

\(\Rightarrow \) \(D \) is well-defined up to constant.

Notable exception: type \(C \).
Energy function

\[B := B_{\mu} = B_{\mu_1,1} \otimes B_{\mu_2,1} \otimes \cdots, \text{ connected by } f_0 \text{ arrows.} \]

The energy \(D : B \rightarrow \mathbb{Z} \) originates from exactly solvable lattice models (computed via local energies and the combinatorial \(R \)-matrix).

Alternative construction (S., Tingley) as affine grading on \(B \):

- constant on classical components (\(f_0 \) arrows removed)
- increases by 1 along \(f_0 \) arrows which are not at the end of a 0-string (Demazure arrows)

Remark

In most cases, \(B \) is still connected upon removal of non-Demazure \(f_0 \) arrows.

\(\Rightarrow D \) is well-defined up to constant.

Notable exception: type C.
Energy function

\[B := B_\mu = B^{\mu_1,1} \otimes B^{\mu_2,1} \otimes \cdots, \] connected by \(f_0 \) arrows.

The energy \(D : B \rightarrow \mathbb{Z} \) originates from exactly solvable lattice models (computed via local energies and the combinatorial \(R \)-matrix).

Alternative construction (S., Tingley) as affine grading on \(B \):
- constant on classical components (\(f_0 \) arrows removed)
- increases by 1 along \(f_0 \) arrows which are not at the end of a 0-string (Demazure arrows)

Remark

In most cases, \(B \) is still connected upon removal of non-Demazure \(f_0 \) arrows.

\(\Rightarrow \) \(D \) is well-defined up to constant.

Notable exception: type \(\mathcal{C} \)
Energy function

\[B := B_\mu = B^{\mu_1,1} \otimes B^{\mu_2,1} \otimes \cdots, \text{ connected by } f_0 \text{ arrows.} \]

The energy \(D : B \to \mathbb{Z} \) originates from exactly solvable lattice models (computed via local energies and the combinatorial \(R \)-matrix).

Alternative construction (S., Tingley) as affine grading on \(B \):
- constant on classical components (\(f_0 \) arrows removed)
- increases by 1 along \(f_0 \) arrows which are not at the end of a 0-string (Demazure arrows)

Remark

In most cases, \(B \) is still connected upon removal of non-Demazure \(f_0 \) arrows.
\(\Rightarrow \) \(D \) is well-defined up to constant.
Notable exception: type \(C \).
Energy function

\[B := B_\mu = B^{\mu_1,1}_1 \otimes B^{\mu_2,1}_2 \otimes \cdots, \] connected by \(f_0 \) arrows.

The energy \(D : B \to \mathbb{Z} \) originates from exactly solvable lattice models (computed via local energies and the combinatorial \(R \)-matrix).

Alternative construction (S., Tingley) as affine grading on \(B \):

- constant on classical components (\(f_0 \) arrows removed)
- increases by 1 along \(f_0 \) arrows which are not at the end of a 0-string (Demazure arrows)

Remark

In most cases, \(B \) is still connected upon removal of non-Demazure \(f_0 \) arrows.

\[\Rightarrow D \] is well-defined up to constant.

Notable exception: type \(C \).
Energy function

\[B := B_{\mu} = B^{\mu_1,1} \otimes B^{\mu_2,1} \otimes \cdots, \] connected by \(f_0 \) arrows.

The energy \(D : B \rightarrow \mathbb{Z} \) originates from exactly solvable lattice models (computed via local energies and the combinatorial \(R \)-matrix).

Alternative construction (S., Tingley) as affine grading on \(B \):
- constant on classical components (\(f_0 \) arrows removed)
- increases by 1 along \(f_0 \) arrows which are not at the end of a 0-string (Demazure arrows)

Remark

In most cases, \(B \) is still connected upon removal of non-Demazure \(f_0 \) arrows.
\[\Rightarrow D \] is well-defined up to constant.
Notable exception: type \(C \).
Outline

Crystals

Energy function

Charge

Arbitrary type
Charge type A

Charge à la Lascoux and Schützenberger: w word of partition content μ

Example

$$\mu = (3, 3, 3, 1)$$

1132214323

charge(1132214323) = 1 + 2 + 3 = 6
Charge type A

Charge à la Lascoux and Schützenberger: w word of partition content μ

Example

$\mu = (3, 3, 3, 1)$

$$\text{charge}(1132214323) = 1 + 2 + 3 = 6$$
Charge type A

Charge à la Lascoux and Schützenberger:

w word of partition content μ

Example

$\mu = (3, 3, 3, 1)$

1132214323 charge contribution 1

$\text{charge}(1132214323) = 1 + 2 + 3 = 6$
Charge à la Lascoux and Schützenberger: w word of partition content μ

Example

$\mu = (3, 3, 3, 1)$

\[
\begin{array}{c}
1132214323 \\
112323
\end{array}
\]

charge(1132214323) = 1 + 2 + 3 = 6
Charge type A

Charge à la Lascoux and Schützenberger: w word of partition content μ

Example

$\mu = (3, 3, 3, 1)$

\[
\begin{array}{c}
1132214323 \\
11 2 323
\end{array}
\]

charge(1132214323) = 1 + 2 + 3 = 6
Charge type \(A \)

Charge à la Lascoux and Schützenberger: \(w \) word of partition content \(\mu \)

Example

\[
\mu = (3, 3, 3, 1)
\]

\[
\begin{align*}
1132214323 & \quad \text{charge contribution 1} \\
11 \ 2 \ 323 & \quad \text{charge contribution 2}
\end{align*}
\]

\[
\text{charge}(1132214323) = 1 + 2 + 3 = 6
\]
Charge type \(A \)

Charge à la \textbf{Lascoux} and \textbf{Schützenberger}:
\(w \) word of partition content \(\mu \)

Example

\[\mu = (3, 3, 3, 1) \]

\[
\begin{align*}
11 & 32214323 & \text{charge contribution 1} \\
11 & 2 & 323 & \text{charge contribution 2} \\
1 & 2 & 3
\end{align*}
\]

\[
\text{charge}(1132214323) = 1 + 2 + 3 = 6
\]
Charge type \(A \)

Charge à la Lascoux and Schützenberger: \(w \) word of partition content \(\mu \)

Example

\[
\mu = (3, 3, 3, 1)
\]

\[
\begin{align*}
1132214323 & \quad \text{charge contribution 1} \\
11 & 2 & 323 & \quad \text{charge contribution 2} \\
1 & 2 & 3
\end{align*}
\]

charge\((1132214323) = 1 + 2 + 3 = 6\)
Charge type A

Charge à la Lascoux and Schützenberger: w word of partition content μ

Example

$\mu = (3, 3, 3, 1)$

classic partition: 1132214323

charge contribution 1

$11 \ 2 \ 323$

charge contribution 2

$1 \ 2 \ 3$

charge contribution 3

charge$(1132214323) = 1 + 2 + 3 = 6$
Charge type A

Charge à la Lascoux and Schützenberger: w word of partition content μ

Example

$\mu = (3, 3, 3, 1)$

\begin{align*}
1132214323 & \quad \text{charge contribution 1} \\
11 & 2 & 323 & \quad \text{charge contribution 2} \\
1 & 2 & 3 & \quad \text{charge contribution 3}
\end{align*}

$\text{charge}(1132214323) = 1 + 2 + 3 = 6$
Charge on KN tableaux - type A

\[B_\mu := \bigotimes_{i=1}^{\mu_1} B_{\mu_i';1} \]

circular order \(\prec_i \): \(i \prec_i i + 1 \prec_i \cdots \prec_i n \prec_i 1 \prec_i \cdots \prec_i i - 1 \)

construct reordered \(c \) from \(b \in B_\mu \)

Example

\[
\begin{array}{c}
\begin{array}{cccc}
3 & 2 & 1 & 2 \\
5 & 3 & 2 \\
6 & 4 & 4 \\
\end{array}
& \quad \text{and} &
\begin{array}{cccc}
3 & 3 & 4 & 2 \\
5 & 2 & 2 \\
6 & 4 & 1 \\
\end{array}
\end{array}
\]

\[\text{cw}(b) = \begin{pmatrix}
6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\
1 & 1 & 3 & 2 & 2 & 1 & 4 & 3 & 2 & 3 \\
\end{pmatrix} \]
Charge on KN tableaux - type A

\[B_\mu := \bigotimes_{i=1}^{\mu_1} B_{\mu_i';1} \]

circular order \(\preceq_i \): \(i \preceq_i i+1 \preceq_i \cdots \preceq_i n \preceq_i 1 \preceq_i \cdots \preceq_i i-1 \)

construct reordered \(c \) from \(b \in B_\mu \)

Example

\[b = \begin{array}{cccc} 3 & 2 & 1 & 2 \\ 5 & 3 & 2 \\ 6 & 4 & 4 \end{array} \quad \text{and} \quad c = \begin{array}{cccc} 3 & 3 & 4 & 2 \\ 5 & 2 & 2 \\ 6 & 4 & 1 \end{array} \]

\[\text{cw}(b) = \begin{pmatrix} 6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\ 1 & 1 & 3 & 2 & 2 & 1 & 4 & 3 & 2 & 3 \end{pmatrix} \]
Charge on KN tableaux - type A

$$B_{\mu} := \bigotimes_{i=1}^{\mu_1} B_{\mu_i}^{\mu_i'} \cdot 1$$

circular order \prec_i: $i \prec_i i + 1 \prec_i \cdots \prec_i n \prec_i 1 \prec_i \cdots \prec_i i - 1$

Construct reordered c from $b \in B_{\mu}$

Example

\[
b = \begin{array}{cccc}
3 & 2 & 1 & 2 \\
5 & 3 & 2 & \\
6 & 4 & 4 & \\
\end{array}
\quad \text{and} \quad c = \begin{array}{cccc}
3 & 3 & 4 & 2 \\
5 & 2 & 2 & \\
6 & 4 & 1 & \\
\end{array}
\]

\[
cw(b) = \begin{pmatrix}
6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\
1 & 1 & 3 & 2 & 2 & 1 & 4 & 3 & 2 & 3 \\
\end{pmatrix}
\]
Charge on KN tableaux - type A

Example

\[
\begin{align*}
 b &= \begin{array}{ccc}
 3 & 2 & 1 \\
 5 & 3 & 2 \\
 6 & 4 & 4 \\
 \end{array} \\
 \text{and} \quad c &= \begin{array}{ccc}
 3 & 3 & 4 \\
 5 & 2 & 2 \\
 6 & 4 & 1 \\
 \end{array} \\
 cw(b) &= \begin{pmatrix}
 6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\
 1 & 1 & 3 & 2 & 2 & 1 & 4 & 3 & 2 & 3
 \end{pmatrix}
\end{align*}
\]

\[
\sum_{\gamma \in \text{Des}(c)} \text{arm}(\gamma) = \text{charge}(cw_2(b))
\]

Remark

A similar construction works in type C.
Charge on KN tableaux - type A

Example

\[b = \begin{array}{cccc} 3 & 2 & 1 & 2 \\ 5 & 3 & 2 & \\ 6 & 4 & 4 \end{array} \quad \text{and} \quad c = \begin{array}{cccc} 3 & 3 & 4 & 2 \\ 5 & 2 & 2 & \\ 6 & 4 & 1 \end{array} \]

\[\text{cw}(b) = \begin{pmatrix} 6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\ 1 & 1 & 3 & 2 & 2 & 1 & 4 & 3 & 2 & 3 \end{pmatrix} \]

\[\sum_{\gamma \in \text{Des}(c)} \text{arm}(\gamma) = \text{charge}(\text{cw}_2(b)) \]

Remark

A similar construction works in type C.
Charge on KN tableaux - type A

Example

\[
b = \begin{array}{cccc}
3 & 2 & 1 & 2 \\
5 & 3 & 2 \\
6 & 4 & 4 \\
\end{array} \quad \text{and} \quad c = \begin{array}{cccc}
3 & 3 & 4 & 2 \\
5 & 2 & 2 \\
6 & 4 & 1 \\
\end{array}
\]

\[
cw(b) = \left(\begin{array}{cccc}
6 & 5 & 4 & 4 \\
1 & 1 & 3 & 2 \\
1 & 4 & 3 & 2 \\
\end{array} \right)
\]

\[
\sum_{\gamma \in \text{Des}(c)} \text{arm}(\gamma) = \text{charge}(cw_2(b))
\]

Remark

A similar construction works in type C.
Charge on KN tableaux - type A

Example

\[
b = \begin{array}{cccc}
3 & 2 & 1 & 2 \\
5 & 3 & 2 & \\
6 & 4 & 4 & \\
\end{array}
\quad \text{and} \quad
\begin{array}{cccc}
3 & 3 & 4 & 2 \\
5 & 2 & 2 & \\
6 & 4 & 1 & \\
\end{array}
\]

\[
w_c(b) = \left(\begin{array}{ccccccccccc}
6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\
1 & 2 & 1 & 2 & 3 & 1 & 2 & 1 & 4 & 3 & 2 & 3 \\
\end{array} \right)
\]

\[
\sum_{\gamma \in \text{Des}(c)} \text{arm}(\gamma) = \text{charge}(w_c(b))
\]

Remark

A similar construction works in type C.
Charge on KN tableaux - type A

Example

\[
\begin{array}{c}
\begin{array}{c}
3 & 2 & 1 & 2 \\
5 & 3 & 2 \\
6 & 4 & 4 \\
\end{array}
\end{array}
\quad \text{and} \quad
\begin{array}{c}
\begin{array}{c}
3 & 3 & 4 & 2 \\
5 & 2 & 2 \\
6 & 4 & 1 \\
\end{array}
\end{array}
\]

\[
cw(b) = \left(\begin{array}{cccccccc}
6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\
1_2 & 1_2 & 3_1 & 2_1 & 2 & 1 & 4 & 3 & 2 & 3 \\
\end{array} \right)
\]

\[
\sum_{\gamma \in \text{Des}(c)} \text{arm} (\gamma) = \text{charge}(cw_2(b))
\]

Remark

A similar construction works in type C.
Charge on KN tableaux - type A

Example

\[b = \begin{array}{ccc}
3 & 2 & 1 \\
5 & 3 & 2 \\
6 & 4 & 4 \\
\end{array} \quad \text{and} \quad c = \begin{array}{ccc}
3 & 3 & 4 \\
5 & 2 & 2 \\
6 & 4 & 1 \\
\end{array} \]

\[cw(b) = \left(\begin{array}{ccccccc}
6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\
1_2 & 1_2 & 3_1 & 2_1 & 2 & 1 & 4 & 3 & 2 & 3 \\
\end{array} \right) \]

\[\sum_{\gamma \in \text{Des}(c)} \text{arm}(\gamma) = \text{charge}(cw_2(b)) \]

Remark

A similar construction works in type C.
Relation between charge and energy

Theorem (Lenart, S. 2011)

\[
B = B_{r_N,1} \otimes \cdots \otimes B_{r_1,1} \text{ of type } A_n^{(1)} \text{ or type } C_n^{(1)}
\]

Then for \(b \in B \)

\[
D(b) = \text{charge}(b)
\]

Idea of proof: Verify that \(\text{charge} \) satisfies the recursive relations of the energy function.
Relation between charge and energy

Theorem (Lenart, S. 2011)

\[B = B^{r_N,1} \otimes \cdots \otimes B^{r_1,1} \text{ of type } A_n^{(1)} \text{ or type } C_n^{(1)} \]

Then for \(b \in B \)

\[D(b) = \text{charge}(b) \]

Idea of proof: Verify that charge satisfies the recursive relations of the energy function.
Outline

Crystals

Energy function

Charge

Arbitrary type
Generalizing the charge to arbitrary root systems

Key concept: quantum Bruhat graph (QBG).

In type A_{n-1}, it is the graph on S_n with directed edges

$$w \rightarrow wt_{ij},$$

where

$$\ell(w_{ij}) = \ell(w) + 1 \quad \text{(Bruhat graph)},$$

or

$$\ell(w_{ij}) = \ell(w) - \ell(t_{ij}) = \ell(w) - 2(j - i) + 1.$$
Generalizing the charge to arbitrary root systems

Key concept: quantum Bruhat graph (QBG).

In type A_{n-1}, it is the graph on S_n with directed edges

$$w \rightarrow wt_{ij},$$

where

$$\ell(wt_{ij}) = \ell(w) + 1 \quad \text{(Bruhat graph)}, \quad \text{or}$$

$$\ell(wt_{ij}) = \ell(w) - \ell(t_{ij}) = \ell(w) - 2(j - i) + 1.$$
Generalizing the charge to arbitrary root systems

Key concept: quantum Bruhat graph (QBG).

In type A_{n-1}, it is the graph on S_n with directed edges

$$w \longrightarrow wt_{ij},$$

where

$$\ell(wt_{ij}) = \ell(w) + 1 \quad (\text{Bruhat graph}), \quad \text{or}$$
$$\ell(wt_{ij}) = \ell(w) - \ell(t_{ij}) = \ell(w) - 2(j - i) + 1.$$
Generalizing the charge to arbitrary root systems

Key concept: quantum Bruhat graph (QBG).

In type A_{n-1}, it is the graph on S_n with directed edges $w \rightarrow wt_{ij}$, where

$$
\ell(wt_{ij}) = \ell(w) + 1 \quad \text{(Bruhat graph)}, \quad \text{or} \quad
\ell(wt_{ij}) = \ell(w) - \ell(t_{ij}) = \ell(w) - 2(j - i) + 1.
$$
Quantum Bruhat graph for S_3:
The key ingredient

Fact. Fix two column strict fillings (in type A)

\[
\begin{array}{c}
\begin{array}{c}
a_1 \\
a_2 \\
\vdots \\
a_k \\
\end{array} \\
\begin{array}{c}
b_1 \\
b_2 \\
\vdots \\
b_k \\
\end{array}
\end{array}
\]

and where the second one is reordered according to the first.

There is a unique path in the quantum Bruhat graph of the following form:
The key ingredient

Fact. Fix two column strict fillings (in type A)

\[
\begin{array}{c|c|c}
 a_1 & b_1 \\
 a_2 & b_2 \\
 \vdots & \vdots \\
 a_k & b_k \\
\end{array}
\]

where the second one is reordered according to the first.

There is a unique path in the quantum Bruhat graph of the following form:
\((k,k+1),\ldots,(k,n)\)

\((2,k+1),\ldots,(2,n)\)

\((1,k+1),\ldots,(1,n)\)
Fillings as chains of permutations

\[b = \begin{pmatrix} 3 & 2 & 1 & 2 \\ 4 & 3 \end{pmatrix} \quad \rightarrow \quad c = \begin{pmatrix} 3 & 3 & 1 & 2 \\ 4 & 2 \end{pmatrix} \quad \rightarrow \quad \Pi = (\pi_1, \pi_2, \ldots). \]

\[\begin{pmatrix} 3 \\ 4 \end{pmatrix} > \begin{pmatrix} 3 \\ 1 \end{pmatrix} < \begin{pmatrix} 3 \\ 2 \end{pmatrix} \]

\[\begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad \rightarrow \quad \begin{pmatrix} 4 \\ 2 \end{pmatrix} \quad \rightarrow \quad \begin{pmatrix} 4 \\ 1 \end{pmatrix} \]

\[(2, 3), (2, 4), (1, 3), (1, 4)\]
Fillings as chains of permutations

\[b = \begin{array}{cccc}
3 & 2 & 1 & 2 \\
4 & 3 \\
\end{array} \quad \rightarrow \quad c = \begin{array}{cccc}
3 & 3 & 1 & 2 \\
4 & 2 \\
\end{array} \quad \rightarrow \quad \Pi = (\pi_1, \pi_2, \ldots) .

\[
\begin{array}{ccc}
3 & 3 & 3 \\
4 & 1 & 2 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 4 & 4 \\
2 & 2 & 1 \\
\end{array}
\]

\[
((2, 3), (2, 4), (1, 3), (1, 4))
\]
Fillings as chains of permutations

\[b = \begin{array}{cccc}
3 & 2 & 1 & 2 \\
4 & 3 \\
\end{array} \quad \rightarrow \quad c = \begin{array}{cccc}
3 & 3 & 1 & 2 \\
4 & 2 \\
\end{array} \quad \rightarrow \quad \Pi = (\pi_1, \pi_2, \ldots). \]

\[\begin{array}{c|c|c|c|c|c}
3 & 3 & 3 & 4 & 1 \\
4 & 1 & 2 & 2 & 1 \\
\end{array} \quad \begin{array}{c|c|c|c|c|c}
1 & 4 & 4 & 2 & 2 \\
2 & 1 & 1 & 3 & 3 \\
\end{array} \quad \left. \begin{array}{c|c|c|c|c|c}
(2, 3), (2, 4), (1, 3), (1, 4) \quad | \quad (1, 2), (1, 3), (1, 4) \quad | \\
\right. \]
Fillings as chains of permutations

\[b = \begin{pmatrix} 3 & 2 & 1 & 2 \\ 4 & 3 \end{pmatrix} \quad \rightarrow \quad c = \begin{pmatrix} 3 & 3 & 1 & 2 \\ 4 & 2 \end{pmatrix} \quad \rightarrow \quad \Pi = (\pi_1, \pi_2, \ldots). \]

\[
\begin{array}{cccccccc}
3 & 3 & 3 & 4 & 1 & 1 & 2 \\
4 & 1 & 2 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 4 & 2 & 1 \\
2 & 4 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
2 & 2 & 2 & 1 \\
3 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
2 & 2 & 1 \\
3 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 1 \\
3 & 4 \\
\end{array}
\]

\[
((2, 3), (2, 4), (1, 3), (1, 4) \ | \ (1, 2), (1, 3), (1, 4) \ | \ (1, 2), (1, 3), (1, 4))
\]
Fillings as chains of permutations

\[b = \begin{array}{ccc}
3 & 2 & 1 \\
4 & 3 & 2 \\
\end{array} \quad \Rightarrow \quad c = \begin{array}{ccc}
3 & 3 & 1 \\
4 & 2 & \end{array} \quad \Rightarrow \quad \Pi = (\pi_1, \pi_2, \ldots).
\]

\[((2, 3), (2, 4), (1, 3), (1, 4) \mid (1, 2), (1, 3), (1, 4) \mid (1, 2), (1, 3), (1, 4)) \]

\[l_r = \text{arm(descent)} \]

\[\text{charge}(b) = \sum_{\gamma \in \text{Des}(c)} \text{arm}(\gamma) = \sum_{\pi_r > \pi_{r+1}} l_r =: \text{level}(\Pi). \]
Fillings as chains of permutations

\[b = \begin{array}{cccc}
3 & 2 & 1 & 2 \\
4 & 3 \\
\end{array} \quad \rightarrow \quad c = \begin{array}{cccc}
3 & 3 & 1 & 2 \\
4 & 2 \\
\end{array} \quad \rightarrow \quad \Pi = (\pi_1, \pi_2, \ldots). \]

\[\begin{array}{cccc}
3 & 3 & 3 & 4 \\
4 & 1 & 2 & 2 \\
\end{array} \quad \begin{array}{cccc}
1 & 1 & 1 & 2 \\
\end{array} \]

\[l_r = \text{arm(descend)} \]

\[l_r = \text{arm(descend)} \]

\[\text{charge}(b) = \sum_{\gamma \in \text{Des}(c)} \text{arm}(\gamma) = \sum_{\pi_r > \pi_{r+1}} l_r =: \text{level}(\Pi). \]
Fillings as chains of permutations

\[b = \begin{bmatrix} 3 & 2 & 1 & 2 \\ 4 & 3 \end{bmatrix} \quad \rightarrow \quad c = \begin{bmatrix} 3 & 3 & 1 & 2 \\ 4 & 2 \end{bmatrix} \quad \rightarrow \quad \Pi = (\pi_1, \pi_2, \ldots). \]

\[
\begin{array}{cccccc}
3 & 3 & 3 & 4 & 1 & 1 & 2 \\
4 & 1 & 2 & < & \rightarrow & \rightarrow & > \\
1 & 4 & > & \rightarrow & 4 & \rightarrow & 2 \\
2 & 2 & < & \rightarrow & 1 & < & 3 \\
\end{array}
\]

\[l_r = \text{arm}(\text{descent}) \]

\[\text{charge}(b) = \sum_{\gamma \in \text{Des}(c)} \text{arm}(\gamma) = \sum_{\pi_r > \pi_{r+1}} l_r =: \text{level}(\Pi). \]
Construction of level statistic

Step 1. Fix a partition \(\mu \).

Step 2. Associate with \(\mu \) a sequence (\(\mu \)-chain) \(\Gamma \) of pairs \((i_r, j_r)\) (i.e., roots in type \(A \)) — several choices possible, but not explained.

Example. For \(\mu = (4, 2, 0) \), we considered
\[\Gamma = ((2, 3), (2, 4), (1, 3), (1, 4)|(1, 2), (1, 3), (1, 4)|(1, 2), (1, 3), (1, 4)) \, . \]

Step 3. Define \(l_r = \#\{s \geq r : (i_s, j_s) = (i_r, j_r)\} \).

Step 4. Define admissible subsets:
\[A(\Gamma) = A(\mu) = \#\{\text{subsets} \, \Pi \, \text{of} \, \Gamma \, \text{giving rise to paths in the QBG}\} \, . \]

Step 5. Given \(\Pi = (\pi_1, \pi_2, \ldots) \in A(\mu) \) as a path in the QBG, define
\[\text{level}(\Pi) = \sum_{\pi_r > \pi_{r+1}} l_r \, . \]
Construction of level statistic

Step 1. Fix a partition μ.

Step 2. Associate with μ a sequence (μ-chain) Γ of pairs (i_r, j_r) (i.e., roots in type A) — several choices possible, but not explained.

Example. For $\mu = (4, 2, 0)$, we considered $\Gamma = ((2, 3), (2, 4), (1, 3), (1, 4)|(1, 2), (1, 3), (1, 4)|(1, 2), (1, 3), (1, 4))$.

Step 3. Define $l_r = \#\{s \geq r : (i_s, j_s) = (i_r, j_r)\}$.

Step 4. Define admissible subsets:

$\mathcal{A}(\Gamma) = \mathcal{A}(\mu) = \#\{\text{subsets } \Pi \text{ of } \Gamma \text{ giving rise to paths in the QBG}\}$.

Step 5. Given $\Pi = (\pi_1, \pi_2, \ldots) \in \mathcal{A}(\mu)$ as a path in the QBG, define

$$\text{level}(\Pi) = \sum_{\pi_r \geq \pi_{r+1}} l_r.$$
Construction of level statistic

Step 1. Fix a partition μ.

Step 2. Associate with μ a sequence (μ-chain) Γ of pairs (i_r, j_r) (i.e., roots in type A) – several choices possible, but not explained.

Example. For $\mu = (4, 2, 0)$, we considered

$\Gamma = ((2, 3), (2, 4), (1, 3), (1, 4)|(1, 2), (1, 3), (1, 4)|(1, 2), (1, 3), (1, 4))$.

Step 3. Define $l_r = \#\{s \geq r : (i_s, j_s) = (i_r, j_r)\}$.

Step 4. Define admissible subsets:

$\mathcal{A}(\Gamma) = \mathcal{A}(\mu) = \#\{\text{subsets } \Pi \text{ of } \Gamma \text{ giving rise to paths in the QBG}\}$.

Step 5. Given $\Pi = (\pi_1, \pi_2, \ldots) \in \mathcal{A}(\mu)$ as a path in the QBG, define

$\text{level}(\Pi) = \sum_{\pi_r > \pi_{r+1}} l_r$.
Construction of level statistic

Step 1. Fix a partition μ.

Step 2. Associate with μ a sequence (μ-chain) Γ of pairs (i_r, j_r) (i.e., roots in type A) – several choices possible, but not explained.

Example. For $\mu = (4, 2, 0)$, we considered
$\Gamma = ((2, 3), (2, 4), (1, 3), (1, 4)|(1, 2), (1, 3), (1, 4)|(1, 2), (1, 3), (1, 4))$.

Step 3. Define $l_r = \#\{s \geq r : (i_s, j_s) = (i_r, j_r)\}$.

Step 4. Define admissible subsets:
$A(\Gamma) = A(\mu) = \#\{\text{subsets } \Pi \text{ of } \Gamma \text{ giving rise to paths in the QBG}\}$.

Step 5. Given $\Pi = (\pi_1, \pi_2, \ldots) \in A(\mu)$ as a path in the QBG, define
$\text{level}(\Pi) = \sum_{\pi_r > \pi_r+1} l_r$.
Construction of level statistic

Step 1. Fix a partition μ.

Step 2. Associate with μ a sequence (μ-chain) Γ of pairs (i_r, j_r) (i.e., roots in type A) — several choices possible, but not explained.

Example. For $\mu = (4, 2, 0)$, we considered

$$\Gamma = ((2, 3), (2, 4), (1, 3), (1, 4)|(1, 2), (1, 3), (1, 4)|(1, 2), (1, 3), (1, 4)) .$$

Step 3. Define $l_r = \#\{s \geq r : (i_s, j_s) = (i_r, j_r)\}$.

Step 4. Define admissible subsets:

$$\mathcal{A}(\Gamma) = \mathcal{A}(\mu) = \#\{\text{subsets } \Pi \text{ of } \Gamma \text{ giving rise to paths in the QBG}\} .$$

Step 5. Given $\Pi = (\pi_1, \pi_2, \ldots) \in \mathcal{A}(\mu)$ as a path in the QBG, define

$$\text{level}(\Pi) = \sum_{\pi_r > \pi_{r+1}} l_r .$$
Construction of level statistic

Step 1. Fix a partition μ.

Step 2. Associate with μ a sequence (μ-chain) Γ of pairs (i_r, j_r) (i.e., roots in type A) — several choices possible, but not explained.

Example. For $\mu = (4, 2, 0)$, we considered $\Gamma = ((2, 3), (2, 4), (1, 3), (1, 4)|(1, 2), (1, 3), (1, 4)|(1, 2), (1, 3), (1, 4))$.

Step 3. Define $l_r = \#\{s \geq r : (i_s, j_s) = (i_r, j_r)\}$.

Step 4. Define admissible subsets:

$A(\Gamma) = A(\mu) = \#\{\text{subsets } \Pi \text{ of } \Gamma \text{ giving rise to paths in the QBG}\}$.

Step 5. Given $\Pi = (\pi_1, \pi_2, \ldots) \in A(\mu)$ as a path in the QBG, define

$\text{level}(\Pi) = \sum_{\pi_r > \pi_{r+1}} l_r$.
Remarks.

1. The above construction works for any finite root system, as all the ingredients apply to the general case.

2. The level statistic originates in the Ram-Yip formula for Macdonald polynomials of arbitrary type:

\[(*) \quad P_\mu(x; q, 0) = \sum_{\Pi \in A(\mu)} q^{\text{level}(\Pi)} x^{\text{weight}(\Pi)}. \]

In fact, we can rewrite (*) via the bijection between \(A(\mu) \) and fillings explained before (which also works in type C).

Theorem (L.)

In types A and C, we have

\[P_\mu(x; q, 0) = \sum_{b \in B_{\mu_1}^{1,1} \otimes B_{\mu_2}^{1,1} \otimes \ldots} q^{\text{charge}(b)} x^{\text{weight}(b)}. \]
Remarks.

1. The above construction works for any finite root system, as all the ingredients apply to the general case.

2. The level statistic originates in the Ram-Yip formula for Macdonald polynomials of arbitrary type:

\[
P_\mu(x; q, 0) = \sum_{\Pi \in A(\mu)} q^{\text{level}(\Pi)} x^{\text{weight}(\Pi)}.
\]

In fact, we can rewrite (*) via the bijection between \(A(\mu) \) and fillings explained before (which also works in type \(C \)).

Theorem (L.)

In types A and C, we have

\[
P_\mu(x; q, 0) = \sum_{b \in B^{\mu_1,1} \otimes B^{\mu_2,1} \otimes ...} q^{\text{charge}(b)} x^{\text{weight}(b)}.
\]
Remarks.

1. The above construction works for any finite root system, as all the ingredients apply to the general case.

2. The level statistic originates in the Ram-Yip formula for Macdonald polynomials of arbitrary type:

\[
(*) \quad P_\mu(x; q, 0) = \sum_{\Pi \in A(\mu)} q^{\text{level}(\Pi)} x^{\text{weight}(\Pi)}.
\]

In fact, we can rewrite \((*)\) via the bijection between \(A(\mu)\) and fillings explained before (which also works in type \(C\)).

Theorem (L.)

In types A and C, we have

\[
P_\mu(x; q, 0) = \sum_{b \in B^{\mu_1}_1 \otimes B^{\mu_2}_1 \otimes \ldots} q^{\text{charge}(b)} x^{\text{weight}(b)}.
\]
Remarks.

1. The above construction works for any finite root system, as all the ingredients apply to the general case.

2. The level statistic originates in the Ram-Yip formula for Macdonald polynomials of arbitrary type:

\[P_\mu(x; q, 0) = \sum_{\Pi \in A(\mu)} q^{\text{level}(\Pi)} x^{\text{weight}(\Pi)}. \]

In fact, we can rewrite (*) via the bijection between \(A(\mu) \) and fillings explained before (which also works in type \(C \)).

Theorem (L.)

In types A and C, we have

\[P_\mu(x; q, 0) = \sum_{b \in B^{\mu_1'} \otimes B^{\mu_2'} \otimes ...} q^{\text{charge}(b)} x^{\text{weight}(b)}. \]
Main results (in arbitrary type)

Construction. (L. and Lubovsky) On $A(\mu)$ was defined the structure of an affine crystal (purely combinatorially) — the quantum alcove model.

Conjecture. (L. and Lubovsky)

1. There is a bijection between $A(\mu)$ in type X_n and the KR crystal $B_\mu := B_{\mu_1}^{1} \otimes B_{\mu_2}^{1} \otimes \ldots$ of type $X_n^{(1)}$ under which the arrows of $A(\mu)$ correspond to arrows of B_μ.

2. If $\Pi \in A(\mu) \leftrightarrow b \in B_\mu$ under this bijection, then

$$E(b) = \text{level}(\Pi).$$
Main results (in arbitrary type)

Construction. (L. and Lubovsky) On $A(\mu)$ was defined the structure of an affine crystal (purely combinatorially) — the quantum alcove model.

Conjecture. (L. and Lubovsky)

1. There is a bijection between $A(\mu)$ in type X_n and the KR crystal $B_\mu := B_{\mu_1}^{(1)} \otimes B_{\mu_2}^{(1)} \otimes \ldots$ of type $X_n^{(1)}$ under which the arrows of $A(\mu)$ correspond to arrows of B_μ.

2. If $\Pi \in A(\mu) \leftrightarrow b \in B_\mu$ under this bijection, then

$$E(b) = \text{level}(\Pi).$$
Main results (in arbitrary type)

Construction. (L. and Lubovsky) On $A(\mu)$ was defined the structure of an affine crystal (purely combinatorially) – the quantum alcove model.

Conjecture. (L. and Lubovsky)

1. There is a bijection between $A(\mu)$ in type X_n and the KR crystal $B_\mu := B^{\mu_1,1}_1 \otimes B^{\mu_2,1}_2 \otimes \ldots$ of type $X_n^{(1)}$ under which the arrows of $A(\mu)$ correspond to arrows of B_μ.

2. If $\Pi \in A(\mu) \leftrightarrow b \in B_\mu$ under this bijection, then

$$E(b) = \text{level}(\Pi).$$
Main results (cont.)

Status of the conjecture. (L., Naito, Sagaki, S., Shimozono)

- The KR crystal and its energy function are realized in terms of quantum Lakshmibai-Seshadri (LS) paths.
- For μ regular (in type A: partitions with distinct parts), the quantum LS paths are in bijection with $A(\Gamma)$ for a special μ-chain Γ. The conjecture is verified in this case.
- It remains to:
 1. relate quantum LS-paths and the quantum alcove model for arbitrary μ;
 2. consider arbitrary μ-chains Γ.
Main results (cont.)

Status of the conjecture. (L., Naito, Sagaki, S., Shimozono)

- The KR crystal and its energy function are realized in terms of **quantum Lakshmibai-Seshadri (LS) paths**.
- For μ regular (in type A: partitions with distinct parts), the quantum LS paths are in bijection with $A(\Gamma)$ for a special μ-chain Γ. The conjecture is verified in this case.
- It remains to:
 1. relate quantum LS-paths and the quantum alcove model for arbitrary μ;
 2. consider arbitrary μ-chains Γ.
Main results (cont.)

Status of the conjecture. (L., Naito, Sagaki, S., Shimozono)

- The KR crystal and its energy function are realized in terms of quantum Lakshmibai-Seshadri (LS) paths.
- For μ regular (in type A: partitions with distinct parts), the quantum LS paths are in bijection with $A(\Gamma)$ for a special μ-chain Γ. The conjecture is verified in this case.
- It remains to:
 1. relate quantum LS-paths and the quantum alcove model for arbitrary μ;
 2. consider arbitrary μ-chains Γ.
Main results (cont.)

Status of the conjecture. (L., Naito, Sagaki, S., Shimozono)

- The KR crystal and its energy function are realized in terms of quantum Lakshmibai-Seshadri (LS) paths.
- For μ regular (in type A: partitions with distinct parts), the quantum LS paths are in bijection with $A(\Gamma)$ for a special μ-chain Γ. The conjecture is verified in this case.
- It remains to:
 1. relate quantum LS-paths and the quantum alcove model for arbitrary μ;
 2. consider arbitrary μ-chains Γ.