A Topological Representation Theorem for Tropical Oriented Matroids

FPSAC 2012, Nagoya

Silke Horn
2 August 2012
Oriented Matroids

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

Theorem („Topological Representation Theorem“, Folkman & Lawrence, 1978)
Every OM can be realised as an arrangement of pseudohyperplanes.
We want a similar theory in the tropical world!

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

Theorem ("Topological Representation Theorem", Folkman & Lawrence, 1978)

Every OM can be realised as an arrangement of pseudohyperplanes.
We want a similar theory in the tropical world!

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

Theorem ("Topological Representation Theorem", Folkman & Lawrence, 1978)

Every OM can be realised as an arrangement of pseudohyperplanes.
We want a similar theory in the tropical world!

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

Theorem ("Topological Representation Theorem", Folkman & Lawrence, 1978)
Every OM can be realised as an arrangement of pseudohyperplanes.
Oriented Matroids

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

Theorem ("Topological Representation Theorem", Folkman & Lawrence, 1978)
Every OM can be realised as an arrangement of pseudohyperplanes.
We want a similar theory in the tropical world!

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

Theorem ("Topological Representation Theorem", Folkman & Lawrence, 1978)

Every OM can be realised as an arrangement of pseudohyperplanes.
Oriented Matroids

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

Theorem ("Topological Representation Theorem", Folkman & Lawrence, 1978)
Every OM can be realised as an arrangement of pseudohyperplanes.
Oriented Matroids

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

Theorem ("Topological Representation Theorem", Folkman & Lawrence, 1978)

Every OM can be realised as an arrangement of pseudohyperplanes.
We want a similar theory in the tropical world!

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

Theorem ("Topological Representation Theorem", Folkman & Lawrence, 1978)

Every OM can be realised as an arrangement of pseudohyperplanes.
Tropical Geometry in a Nutshell

- named “tropical” in honour of Brazilian mathematician Imre Simon
- algebraic geometry over the tropical semiring \((\mathbb{R} \cup \{\infty\}, \oplus, \odot)\)
 \[x \oplus y := \min\{x, y\}, \quad x \odot y := x + y \]
- linear tropical polynomial: \(p(x) = \bigoplus_{i=1}^{d} a_i \odot x_i = \min_{1 \leq i \leq d} \{a_i + x_i\}\)
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial
Tropical Geometry in a Nutshell

- named “tropical” in honour of Brazilian mathematician Imre Simon
- algebraic geometry over the tropical semiring \((\mathbb{R} \cup \{\infty\}, \oplus, \odot)\)
 \[x \oplus y := \min\{x, y\}, \quad x \odot y := x + y \]
- linear tropical polynomial: \(p(x) = \bigoplus_{i=1}^{d} a_i \odot x_i = \min_{1 \leq i \leq d}\{a_i + x_i\}\)
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial
Tropical Geometry in a Nutshell

- named “tropical” in honour of Brazilian mathematician Imre Simon
- algebraic geometry over the tropical semiring \((\mathbb{R} \cup \{\infty\}, \oplus, \odot)\)
 \[x \oplus y := \min\{x, y\}, \quad x \odot y := x + y \]
- linear tropical polynomial: \(p(x) = \bigoplus_{i=1}^{d} a_i \odot x_i = \min_{1 \leq i \leq d}\{a_i + x_i\} \)
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial
Tropical Geometry in a Nutshell

- named “tropical” in honour of Brazilian mathematician Imre Simon
- algebraic geometry over the tropical semiring \((\mathbb{R} \cup \{\infty\}, \oplus, \odot)\)
 \[x \oplus y := \min\{x, y\}, \quad x \odot y := x + y \]
- linear tropical polynomial: \(p(x) = \bigoplus_{i=1}^{d} a_i \odot x_i = \min_{1 \leq i \leq d}\{a_i + x_i\}\)
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial
Tropical Geometry in a Nutshell

- named “tropical” in honour of Brazilian mathematician Imre Simon
- algebraic geometry over the tropical semiring \((\mathbb{R} \cup \{\infty\}, \oplus, \odot)\)
 \[x \oplus y := \min\{x, y\}, \quad x \odot y := x + y \]
- linear tropical polynomial: \(p(x) = \bigoplus_{i=1}^{d} a_i \odot x_i = \min_{1 \leq i \leq d}\{a_i + x_i\} \)
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial
Tropical Geometry in a Nutshell

- named “tropical” in honour of Brazilian mathematician Imre Simon
- algebraic geometry over the tropical semiring \((\mathbb{R} \cup \{\infty\}, \oplus, \odot)\)

 \[x \oplus y := \min\{x, y\}, \quad x \odot y := x + y \]

- linear tropical polynomial:

 \[p(x) = \bigoplus_{i=1}^{d} a_i \odot x_i = \min_{1 \leq i \leq d}\{a_i + x_i\} \]

- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial

1-dimensional tropical hyperplane
(tropical line)
Tropical Geometry in a Nutshell

- named “tropical” in honour of Brazilian mathematician Imre Simon
- algebraic geometry over the tropical semiring \((\mathbb{R} \cup \{\infty\}, \oplus, \odot)\)
 \(x \oplus y := \min\{x, y\}, x \odot y := x + y\)
- linear tropical polynomial: \(p(x) = \bigoplus_{i=1}^{d} a_i \odot x_i = \min_{1 \leq i \leq d}\{a_i + x_i\}\)
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial

1-dimensional tropical hyperplane (tropical line)
2-dimensional tropical hyperplane
Arrangements of Tropical Hyperplanes
(n, d)-types and tropical covectors
Arrangements of Tropical Hyperplanes
(n, d)-types and tropical covectors

(1,3,2)
Arrangements of Tropical Hyperplanes
(n, d)-types and tropical covectors
Tropical Oriented Matroids (TOMs) and Tropical Pseudohyperplanes

- Definition by Ardila and Develin via covector-axioms
 - Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
 - There are non-realisable TOMs.
 - Analogue to the Topological Representation Theorem?

Definition

A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of $\mathbb{T}P^{d-1}$ that fixes the boundary.

Problem: Define tropical pseudohyperplane arrangements!
Definition by Ardila and Develin via covector-axioms

Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.

There are non-realisable TOMs.

Analogue to the Topological Representation Theorem?

Definition

A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of $\mathbb{T}P^{d-1}$ that fixes the boundary.

Problem: Define tropical pseudohyperplane arrangements!
Tropical Oriented Matroids (TOMs) and Tropical Pseudohyperplanes

- Definition by Ardila and Develin via covector-axioms
- Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
- There are non-realisable TOMs.
- Analogue to the Topological Representation Theorem?

Definition
A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of \mathbb{T}^{d-1} that fixes the boundary.

Problem: Define tropical pseudohyperplane arrangements!
Tropical Oriented Matroids (TOMs) and Tropical Pseudohyperplanes

Definition by Ardila and Develin via covector-axioms

Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.

There are non-realisable TOMs.

Analogue to the Topological Representation Theorem?

Definition

A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of $\mathbb{T}P^{d-1}$ that fixes the boundary.

Problem: Define tropical pseudohyperplane arrangements!
Definition by Ardila and Develin via covector-axioms

Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.

There are non-realisable TOMs.

Analogue to the Topological Representation Theorem?

Definition

A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of $\mathbb{T}P^{d-1}$ that fixes the boundary.

Problem: Define tropical pseudohyperplane arrangements!
Definition by Ardila and Develin via covector-axioms

Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.

There are non-realisable TOMs.

Analogue to the Topological Representation Theorem?

Definition

A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of $\mathbb{T}P^{d-1}$ that fixes the boundary.

Problem: Define tropical pseudohyperplane arrangements!
Tropical Oriented Matroids (TOMs) and Tropical Pseudohyperplanes

- Definition by Ardila and Develin via covector-axioms
- Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
- There are non-realisable TOMs.
- Analogue to the Topological Representation Theorem?

Definition

A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of $\mathbb{T}P^{d-1}$ that fixes the boundary.

Problem: Define tropical pseudohyperplane arrangements!
The Minkowski sum of two sets X, Y is $X + Y := \{x + y \mid x \in X, y \in Y\}$.

Definition
A polytopal subdivision of $n\triangle^{d-1}$ is mixed if every face is a Minkowski sum of faces of \triangle^{d-1}.

Theorem (Ardila, Develin, 2007)
Every TOM yields a mixed subdivision.

Conjecture (Ardila, Develin, 2007)
The converse also holds.
The Minkowski sum of two sets X, Y is $X + Y := \{x + y \mid x \in X, y \in Y\}$.

Definition

A polytopal subdivision of $n \triangle^{d-1}$ is mixed if every face is a Minkowski sum of faces of \triangle^{d-1}.

Theorem (Ardila, Develin, 2007)

Every TOM yields a mixed subdivision.

Conjecture (Ardila, Develin, 2007)

The converse also holds.
The Minkowski sum of two sets X, Y is $X + Y := \{x + y \mid x \in X, y \in Y\}$.

Definition
A polytopal subdivision of $n\triangle^{d-1}$ is **mixed** if every face is a Minkowski sum of faces of \triangle^{d-1}.

Theorem (Ardila, Develin, 2007)
Every TOM yields a mixed subdivision.

Conjecture (Ardila, Develin, 2007)
The converse also holds.
The Minkowski sum of two sets X, Y is $X + Y := \{x + y \mid x \in X, y \in Y\}$.

Definition
A polytopal subdivision of $n \triangle^{d-1}$ is mixed if every face is a Minkowski sum of faces of \triangle^{d-1}.

Theorem (Ardila, Develin, 2007)
Every TOM yields a mixed subdivision.

Conjecture (Ardila, Develin, 2007)
The converse also holds.
The Minkowski sum of two sets X, Y is $X + Y := \{ x + y \mid x \in X, y \in Y \}$.

Definition

A polytopal subdivision of $n\triangle^{d-1}$ is **mixed** if every face is a Minkowski sum of faces of \triangle^{d-1}.

Theorem (Ardila, Develin, 2007)

Every TOM yields a mixed subdivision.

Conjecture (Ardila, Develin, 2007)

The converse also holds.
tropical oriented matroids

tropical hyperplane arrangements

mixed subdivisions of $n\Delta^{d-1}$

tropical pseudohyperplane arrangements
tropical oriented matroids

mixed subdivisions of $n\triangle^{d-1}$

tropical hyperplane arrangements

tropical pseudo-hyperplane arrangements

Ardila/Develin
tropical oriented matroids

Ardila/Develin

mixed subdivisions of $n\Delta^{d-1}$

Ardila/Develin

tropical hyperplane arrangements

tropical pseudo hyperplane arrangements
tropical oriented matroids

Ardila/Develin

mixed subdivisions of $n \triangle^{d-1}$

Ardila/Develin

tropical hyperplane arrangements

tropical pseudohyperplane arrangements ???
tropical oriented matroids

mixed subdivisions of $n \triangle^{d-1}$

Ardila/Develin

A/D: 3 out of 4 axioms
Oh/Yoo: fine case

tropical pseudohyperplane arrangements

“The Bigger Picture”
tropical oriented matroids

mixed subdivisions of $n \Delta^{d-1}$

Ardila/Develin: 3 out of 4 axioms
Oh/Yoo: fine case

Ardila/Develin

tropical hyperplane arrangements

Ardila/Develin

tropical pseudo-hyperplane arrangements
tropical oriented matroids

Ardila/Develin

mixed subdivisions of $n \triangle^{d-1}$

A/D: 3 out of 4 axioms
Oh/Yoo: fine case

Topological Representation Theorem ???

Ardila/Develin

tropical hyperplane arrangements

tropical pseudo hyperplane arrangements ???
Mixed Subdivisions and TROPHYs

Theorem (H., 2011)

The Poincaré dual of a mixed subdivision of $n\triangle^{d-1}$ yields a family of tropical pseudohyperplanes.
Theorem (H., 2011)

The Poincaré dual of a mixed subdivision of $n\triangle^{d-1}$ yields a family of tropical pseudohyperplanes.
Theorem (H., 2011)

The Poincaré dual of a mixed subdivision of $n \triangle^{d-1}$ yields a family of tropical pseudohyperplanes.
Theorem (H., 2011)

The Poincaré dual of a mixed subdivision of $n \triangle^{d-1}$ yields a family of tropical pseudohyperplanes.
Theorem (H., 2011)

The Poincaré dual of a mixed subdivision of \(n\triangle^{d-1} \) yields a family of tropical pseudohyperplanes.
Theorem (H., 2011)

The Poincaré dual of a mixed subdivision of \(n \triangle^{d-1} \) yields a family of tropical pseudohyperplanes.
Let M be a TOM.

Elimination property: For $A, B \in M$, $k \in [n]$ there is $C \in M$ such that

- $C_k = A_k \cup B_k$,
- $C_i \in \{A_i, B_i, A_i \cup B_i\}$.

convex hull of A and B: $M_{AB} := \{ C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}$.

Contains every elimination of A and B.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all $A, B \in S$.

\Rightarrow This is a topological problem!
Let M be a TOM.

Elimination property: For $A, B \in M$, $k \in [n]$ there is $C \in M$ such that

- $C_k = A_k \cup B_k$,
- $C_i \in \{A_i, B_i, A_i \cup B_i\}$.

Convex hull of A and B:

$M_{AB} := \{C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}$.

Contains every elimination of A and B.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all $A, B \in S$.

\Rightarrow This is a topological problem!
Let M be a TOM.

Elimination property: For $A, B \in M$, $k \in [n]$ there is $C \in M$ such that

- $C_k = A_k \cup B_k$,
- $C_i \in \{A_i, B_i, A_i \cup B_i\}$.

Convex hull of A and B:

$M_{AB} := \{C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}$.

Contains every elimination of A and B.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all $A, B \in S$.

⇒ This is a topological problem!
Let M be a TOM.

Elimination property: For $A, B \in M$, $k \in [n]$ there is $C \in M$ such that
- $C_k = A_k \cup B_k$,
- $C_i \in \{A_i, B_i, A_i \cup B_i\}$.

Convex hull of A and B: $M_{AB} := \{C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}$.
Contains every elimination of A and B.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all $A, B \in S$.

\implies This is a topological problem!
Let M be a TOM.

Elimination property: For $A, B \in M$, $k \in [n]$ there is $C \in M$ such that
- $C_k = A_k \cup B_k$,
- $C_i \in \{A_i, B_i, A_i \cup B_i\}$.

Convex hull of A and B:
$M_{AB} := \{C \in M | C_i \in \{A_i, B_i, A_i \cup B_i\}\}$.
Contains every elimination of A and B.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all $A, B \in S$.

\Rightarrow This is a topological problem!
Let M be a TOM.

Elimination property: For $A, B \in M$, $k \in [n]$ there is $C \in M$ such that

- $C_k = A_k \cup B_k$,
- $C_i \in \{A_i, B_i, A_i \cup B_i\}$.

Convex hull of A and B: $M_{AB} := \{C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}$. Contains every elimination of A and B.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all $A, B \in S$.

⇒ This is a topological problem!
Let M be a TOM.

Elimination property: For $A, B \in M$, $k \in [n]$ there is $C \in M$ such that

- $C_k = A_k \cup B_k,$
- $C_i \in \{A_i, B_i, A_i \cup B_i\}.$

convex hull of A and B:

$M_{AB} := \{C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}.$

Contains every elimination of A and $B.$

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all $A, B \in S.$

⇒ This is a topological problem!
Let M be a TOM.

Elimination property: For $A, B \in M$, $k \in [n]$ there is $C \in M$ such that
- $C_k = A_k \cup B_k$,
- $C_i \in \{A_i, B_i, A_i \cup B_i\}$.

Convex hull of A and B:

$M_{AB} := \{ C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}$.
Contains every elimination of A and B.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all $A, B \in S$.

\Rightarrow This is a topological problem!
Let M be a TOM.

Elimination property: For $A, B \in M$, $k \in [n]$ there is $C \in M$ such that

- $C_k = A_k \cup B_k$,
- $C_i \in \{A_i, B_i, A_i \cup B_i\}$.

Convex hull of A and B: $M_{AB} := \{C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}$. Contains every elimination of A and B.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all $A, B \in S$.

\implies This is a topological problem!
Let M be a TOM.

Elimination property: For $A, B \in M$, $k \in [n]$ there is $C \in M$ such that
- $C_k = A_k \cup B_k$,
- $C_i \in \{A_i, B_i, A_i \cup B_i\}$.

Convex hull of A and B:

$M_{AB} := \{C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}$. Contains every elimination of A and B.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all $A, B \in S$.

\Rightarrow This is a topological problem!
Let M be a TOM.

Elimination property: For $A, B \in M$, $k \in [n]$ there is $C \in M$ such that

- $C_k = A_k \cup B_k$,
- $C_i \in \{A_i, B_i, A_i \cup B_i\}$.

Convex hull of A and B:

$M_{AB} := \{C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}$. Contains every elimination of A and B.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all $A, B \in S$.

\Rightarrow This is a topological problem!
Let M be a TOM.

Elimination property: For $A, B \in M$, $k \in [n]$ there is $C \in M$ such that

- $C_k = A_k \cup B_k$,
- $C_i \in \{A_i, B_i, A_i \cup B_i\}$.

Convex hull of A and B: $M_{AB} := \{C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}$. Contains every elimination of A and B.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all $A, B \in S$.

⇒ This is a topological problem!
Arrangements of Tropical Pseudohyperplanes (TROPHYs)

IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)
A finite family \mathcal{A} of TROPHYs is an arrangement if for every $\mathcal{A}' \subseteq \mathcal{A}$ and \mathcal{I}

- $\bigcap \mathcal{A}'_{\mathcal{I}}$ is empty or
- $\mathcal{A}'_{\mathcal{I}}$ is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation Theorem, H., 2011)
A mixed subdivision of $n \triangle^{d-1}$ yields an arrangement of TROPHYs.

$\mathcal{I} = (2, 23, 1, 12, 3, 3)$
$\mathcal{A}_{\mathcal{I}}$: induced family of (linear) pseudohyperplanes
Arrangements of Tropical Pseudohyperplanes (TROPHYs)

IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)
A finite family \mathcal{A} of TROPHYs is an arrangement if for every $\mathcal{A}' \subseteq \mathcal{A}$ and \mathcal{I}

- $\bigcap \mathcal{A}'_I$ is empty or
- \mathcal{A}'_I is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation Theorem, H., 2011)
A mixed subdivision of $n \triangle^{d-1}$ yields an arrangement of TROPHYs.

$I = (2, 23, 1, 12, 3, 3)$

\mathcal{A}_I: induced family of (linear) pseudohyperplanes
Arrangements of Tropical Pseudohyperplanes (TROPHYs)

IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)
A finite family \mathcal{A} of TROPHYs is an arrangement if for every $\mathcal{A}' \subseteq \mathcal{A}$ and \mathcal{I}
- $\bigcap \mathcal{A}'$ is empty or
- \mathcal{A}' is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation Theorem, H., 2011)
A mixed subdivision of $n \triangle^{d-1}$ yields an arrangement of TROPHYs.

$I = (2, 23, 1, 12, 3, 3)$

\mathcal{I}: induced family of (linear) pseudohyperplanes
IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)
A finite family \mathcal{A} of TROPHYs is an arrangement if for every $\mathcal{A}' \subseteq \mathcal{A}$ and \mathcal{I}

- $\bigcap \mathcal{A}' \mathcal{I}$ is empty or
- $\mathcal{A}' \mathcal{I}$ is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation Theorem, H., 2011)
A mixed subdivision of $n \triangle^{d-1}$ yields an arrangement of TROPHYs.
IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)

A finite family \mathcal{A} of TROPHYs is an arrangement if for every $\mathcal{A}' \subseteq \mathcal{A}$ and \mathcal{I}

- $\bigcap \mathcal{A}_I'$ is empty or
- \mathcal{A}_I' is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation Theorem, H., 2011)

A mixed subdivision of $n\triangle^{d-1}$ yields an arrangement of TROPHYs.
Arrangements of Tropical Pseudohyperplanes (TROPHYs)

IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)
A finite family \(\mathcal{A} \) of TROPHYs is an arrangement if for every \(\mathcal{A}^\prime \subseteq \mathcal{A} \) and \(\mathcal{I} \)
- \(\bigcap \mathcal{A}^\prime \mathcal{I} \) is empty or
- \(\mathcal{A}^\prime \mathcal{I} \) is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation Theorem, H., 2011)
A mixed subdivision of \(n \triangle ^{d-1} \) yields an arrangement of TROPHYs.
"The Bigger Picture" revisited

- Tropical oriented matroids
 - Mixed subdivisions of $n\triangle^{d-1}$
- Tropical hyperplane arrangements
 - Tropical pseudohyperplane arrangements

Ardila/Develin

Topological Representation Theorem
“The Bigger Picture” revisited

- Tropical oriented matroids
- Mixed subdivisions of $n\triangle^{d-1}$
- Tropical hyperplane arrangements
- Tropical pseudohyperplane arrangements

Ardila/Develin

Topological Representation Theorem

2 August 2012 | TU Darmstadt | Silke Horn | 10
“The Bigger Picture” revisited

- Tropical oriented matroids
- Mixed subdivisions of $n \triangle^{d-1}$
- Tropical hyperplane arrangements
- Tropical pseudohyperplane arrangements

Ardila/Develin

Topological Representation Theorem

2 August 2012 | TU Darmstadt | Silke Horn | 10
“The Bigger Picture” revisited

- tropical oriented matroids
- tropical hyperplane arrangements
- tropical pseudohyperplane arrangements
- mixed subdivisions of $n\triangle^{d-1}$

Ardila/Develin

Topological Representation Theorem !!!
The Bigger Picture revisited

- Tropical oriented matroids
- Mixed subdivisions of $n\triangle^{d-1}$
- Tropical hyperplane arrangements
- Tropical pseudohyperplane arrangements

Corollary !!!

Topological Representation Theorem !!!
The Missing Arrow
The Elimination Property

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

Sketch of proof.

- **convex hull of types:**

 \[\text{conv}(A, B) := \{ C \mid C_i \in \{ A_i, B_i, A_i \cup B_i \} \} \]

- Elimination is satisfied iff convex hull is path-connected.

- Approximate \(\text{conv}(A, B) \) by affine pseudohalfspaces.

- Constructed by “blowing up” tropical pseudohyperplanes.

- Apply Topological Representation Theorem.
Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

Sketch of proof.

- **convex hull of types:**
 \[
 \text{conv}(A, B) := \{ C \mid C_i \in \{ A_i, B_i, A_i \cup B_i \} \}
 \]

- Elimination is satisfied iff convex hull is path-connected.

- Approximate \(\text{conv}(A, B) \) by affine pseudohalfspaces.

- Constructed by “blowing up” tropical pseudohyperplanes.

- Apply Topological Representation Theorem.
The Missing Arrow
The Elimination Property

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

Sketch of proof.

- **convex hull** of types:
 \[\text{conv}(A, B) := \{ C \mid C_i \in \{ A_i, B_i, A_i \cup B_i \} \} \]

- Elimination is satisfied iff convex hull is path-connected.

- Approximate \(\text{conv}(A, B) \) by affine pseudohalfspaces.

- Constructed by “blowing up” tropical pseudohyperplanes.

- Apply Topological Representation Theorem.
The Missing Arrow
The Elimination Property

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

Sketch of proof.

- Convex hull of types:
 \[\text{conv}(A, B) := \{ C \mid C_i \in \{ A_i, B_i, A_i \cup B_i \} \} \]

- Elimination is satisfied iff convex hull is path-connected.

- Approximate \(\text{conv}(A, B) \) by affine pseudohalfspaces.

- Constructed by “blowing up” tropical pseudohyperplanes.

- Apply Topological Representation Theorem.

\[A_i = 2, B_i = 13 \]
Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

Sketch of proof.

- **convex hull** of types:
 \[\text{conv}(A, B) := \{ C \mid C_i \in \{ A_i, B_i, A_i \cup B_i \} \} \]

- Elimination is satisfied iff convex hull is path-connected.

- Approximate \(\text{conv}(A, B) \) by affine pseudohalfspaces.

- Constructed by “blowing up” tropical pseudohyperplanes.

- Apply Topological Representation Theorem.

\[A_i = 2, B_i = 13 \]
The Missing Arrow
The Elimination Property

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

Sketch of proof.

- **convex hull** of types:
 \[\text{conv}(A, B) := \{ C \mid C_i \in \{A_i, B_i, A_i \cup B_i\} \} \]

- Elimination is satisfied iff convex hull is path-connected.

- Approximate \(\text{conv}(A, B) \) by affine pseudohalfspaces.

- Constructed by “blowing up” tropical pseudohyperplanes.

- Apply Topological Representation Theorem.

\[A_i = 2, B_i = 13 \]
The Missing Arrow
The Elimination Property

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

Sketch of proof.

- **convex hull** of types:
 \[
 \text{conv}(A, B) := \{ C \mid C_i \in \{ A_i, B_i, A_i \cup B_i \}\}
 \]

- Elimination is satisfied iff convex hull is path-connected.

- Approximate \(\text{conv}(A, B) \) by affine pseudohalfspaces.

- Constructed by “blowing up” tropical pseudohyperplanes.

- Apply Topological Representation Theorem.

\[A_i = 2, B_i = 13 \]
Thanks for your attention!