Asymptotical behaviour of roots in infinite Coxeter groups

Vivien Ripoll
LaCIM, Université du Québec à Montréal

FPSAC 2012, July 30th
Nagoya University, Nagoya, Japan

Joint work with Christophe Hohlweg (UQÀM) and Jean-Philippe Labbé (FU Berlin)
What is a root system? (in this talk)

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

1. Start with a simple system Δ:
 - Δ is a basis for V;
 - $\forall \alpha \in \Delta, B(\alpha, \alpha) = 1$;
 - $\forall \alpha \neq \beta \in \Delta$:
 - either $B(\alpha, \beta) = -\cos\left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$,
 - or $B(\alpha, \beta) \leq -1$.
What is a root system? (in this talk)

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

1. Start with a simple system Δ:
 - Δ is a basis for V
 - $\forall \alpha \in \Delta, B(\alpha, \alpha) = 1$
 - $\forall \alpha \neq \beta \in \Delta$:
 - either $B(\alpha, \beta) = -\cos \left(\frac{\pi}{m} \right)$ for some $m \in \mathbb{Z}_{\geq 2}$
 - or $B(\alpha, \beta) \leq -1$.
What is a root system? (in this talk)

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

1. Start with a simple system Δ:
 - Δ is a basis for V;
 - $\forall \alpha \in \Delta, B(\alpha, \alpha) = 1$;
 - $\forall \alpha \neq \beta \in \Delta$:
 - either $B(\alpha, \beta) = -\cos \left(\frac{\pi}{m} \right)$ for some $m \in \mathbb{Z}_{\geq 2}$,
 - or $B(\alpha, \beta) \leq -1$.

What is a root system? (in this talk)

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

1. Start with a simple system Δ:
 - Δ is a basis for V;
 - $\forall \alpha \in \Delta, B(\alpha, \alpha) = 1$;
 - $\forall \alpha \neq \beta \in \Delta$:
 - either $B(\alpha, \beta) = -\cos \left(\frac{\pi}{m} \right)$ for some $m \in \mathbb{Z}_{\geq 2}$,
 - or $B(\alpha, \beta) \leq -1$.
What is a root system? (in this talk)

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

1. Start with a simple system Δ:
 - Δ is a basis for V;
 - $\forall \alpha \in \Delta, B(\alpha, \alpha) = 1$;
 - $\forall \alpha \neq \beta \in \Delta$:
 - either $B(\alpha, \beta) = -\cos \left(\frac{\pi}{m} \right)$ for some $m \in \mathbb{Z}_{\geq 2}$,
 - or $B(\alpha, \beta) \leq -1$.
What is a root system? (in this talk)

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

1. Start with a simple system Δ:
 - Δ is a basis for V;
 - $\forall \alpha \in \Delta, B(\alpha, \alpha) = 1$;
 - $\forall \alpha \neq \beta \in \Delta$:
 - either $B(\alpha, \beta) = -\cos \left(\frac{\pi}{m} \right)$ for some $m \in \mathbb{Z}_{\geq 2}$,
 - or $B(\alpha, \beta) \leq -1$.
What is a root system? (in this talk)

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

1. Start with a simple system Δ:
 - Δ is a basis for V;
 - $\forall \alpha \in \Delta, B(\alpha, \alpha) = 1$;
 - $\forall \alpha \neq \beta \in \Delta$:
 - either $B(\alpha, \beta) = -\cos \left(\frac{\pi}{m} \right)$ for some $m \in \mathbb{Z}_{\geq 2}$,
 - or $B(\alpha, \beta) \leq -1$.
What is a root system?

2. For each $\alpha \in \Delta$, define the B-reflection s_{α}:

$$s_{\alpha} : V \rightarrow V$$

$$v \mapsto v - 2B(\alpha, v) \alpha.$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^\perp.

Notation: $S = \{ s_{\alpha}, \alpha \in \Delta \}$.

3. Construct the B-reflection group $W := \langle S \rangle$.

4. Act by W on Δ to construct the root system

$$\Phi := W(\Delta).$$

Note: if $\rho = w(\alpha)$ (with $\alpha \in \Delta$), $ws_{\alpha}w^{-1}$ is the B-reflection associated to the root ρ.
What is a root system?

2. For each $\alpha \in \Delta$, define the B-reflection s_{α}:

$$s_{\alpha} : \quad V \rightarrow V$$

$$v \mapsto v - 2B(\alpha, v) \alpha.$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^\perp.

Notation: $S = \{s_{\alpha}, \alpha \in \Delta\}$.

3. Construct the B-reflection group $W := \langle S \rangle$.

4. Act by W on Δ to construct the root system

\[\Phi := W(\Delta). \]

Note: if $\rho = w(\alpha)$ (with $\alpha \in \Delta$), $ws_{\alpha}w^{-1}$ is the B-reflection associated to the root ρ.
What is a root system?

2. For each $\alpha \in \Delta$, define the B-reflection s_α:

$$s_\alpha : \ V \to V$$

$$v \mapsto v - 2B(\alpha, v) \alpha.$$

Check: $s_\alpha(\alpha) = -\alpha$, and s_α fixes pointwise α^\perp.

Notation: $S = \{s_\alpha, \alpha \in \Delta\}$.

3. Construct the B-reflection group $W := \langle S \rangle$.

4. Act by W on Δ to construct the root system $\Phi := W(\Delta)$.

Note: if $\rho = w(\alpha)$ (with $\alpha \in \Delta$), $ws_\alpha w^{-1}$ is the B-reflection associated to the root ρ.
What is a root system?

2. For each $\alpha \in \Delta$, define the B-reflection s_α:

$$s_\alpha : \mathcal{V} \rightarrow \mathcal{V}$$

$$v \mapsto v - 2B(\alpha, v) \alpha.$$

Check: $s_\alpha(\alpha) = -\alpha$, and s_α fixes pointwise α^\perp.

Notation: $S = \{s_\alpha, \alpha \in \Delta\}$.

3. Construct the B-reflection group $W := \langle S \rangle$.

4. Act by W on Δ to construct the root system

$$\Phi := W(\Delta).$$

Note: if $\rho = w(\alpha)$ (with $\alpha \in \Delta$), $ws_\alpha w^{-1}$ is the B-reflection associated to the root ρ.
What is a root system?

2. For each $\alpha \in \Delta$, define the B-reflection s_α:

$$s_\alpha : V \to V \quad v \mapsto v - 2B(\alpha, v) \alpha.$$

Check: $s_\alpha(\alpha) = -\alpha$, and s_α fixes pointwise α^\perp.

Notation: $S = \{s_\alpha, \alpha \in \Delta\}$.

3. Construct the B-reflection group $W := \langle S \rangle$.

4. Act by W on Δ to construct the root system

$$\Phi := W(\Delta).$$

Note: if $\rho = w(\alpha)$ (with $\alpha \in \Delta$), $ws_\alpha w^{-1}$ is the B-reflection associated to the root ρ.
What is a root system?

2. For each $\alpha \in \Delta$, define the B-reflection s_α:

$$s_\alpha : \ V \rightarrow \ V \quad v \mapsto \ v - 2B(\alpha, v) \alpha.$$

Check: $s_\alpha(\alpha) = -\alpha$, and s_α fixes pointwise α^\perp.

Notation: $S = \{ s_\alpha, \ \alpha \in \Delta \}$.

3. Construct the B-reflection group $W := \langle S \rangle$.

4. Act by W on Δ to construct the root system

$$\Phi := W(\Delta).$$

Note: if $\rho = w(\alpha)$ (with $\alpha \in \Delta$), $ws_\alpha w^{-1}$ is the B-reflection associated to the root ρ.

Coxeter group and root system

Proposition (Krammer)

- \((W, S)\) is a Coxeter system.
- The order of \(s_\alpha s_\beta\) is \(m\) if \(B(\alpha, \beta) = -\cos(\pi / m)\), and \(\infty\) if \(B(\alpha, \beta) \leq -1\).
- Let \(\Phi^+ := \Phi \cap \text{cone}(\Delta)\). Then: \(\Phi = \Phi^+ \sqcup (-\Phi^+)\).

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].
Coxeter group and root system

Proposition (Krammer)

- \((W, S)\) is a Coxeter system.
- The order of \(s_\alpha s_\beta\) is \(m\) if \(B(\alpha, \beta) = -\cos(\pi/m)\), and \(\infty\) if \(B(\alpha, \beta) \leq -1\).
- Let \(\Phi^+ := \Phi \cap \text{cone}(\Delta)\). Then: \(\Phi = \Phi^+ \sqcup (-\Phi^+)\).

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].
Coxeter group and root system

Proposition (Krammer)

- \((W, S)\) is a Coxeter system.
- The order of \(s_\alpha s_\beta\) is \(m\) if \(B(\alpha, \beta) = -\cos(\pi/m)\), and \(\infty\) if \(B(\alpha, \beta) \leq -1\).
- Let \(\Phi^+ := \Phi \cap \text{cone}(\Delta)\). Then: \(\Phi = \Phi^+ \cup (-\Phi^+).\)

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].
Proposition (Krammer)

- \((W, S)\) is a Coxeter system.
- The order of \(s_\alpha s_\beta\) is \(m\) if \(B(\alpha, \beta) = -\cos(\pi/m)\), and \(\infty\) if \(B(\alpha, \beta) \leq -1\).
- Let \(\Phi^+ := \Phi \cap \text{cone}(\Delta)\). Then: \(\Phi = \Phi^+ \sqcup (-\Phi^+)\).

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].
Coxeter group and root system

Proposition (Krammer)

- (W, S) is a Coxeter system.
- The order of $s_{\alpha} s_{\beta}$ is m if $B(\alpha, \beta) = -\cos(\pi/m)$, and ∞ if $B(\alpha, \beta) \leq -1$.
- Let $\Phi^+ := \Phi \cap \text{cone}(\Delta)$. Then: $\Phi = \Phi^+ \sqcup (-\Phi^+)$.

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].
Infinite root systems

Finite root systems are well studied:
\(\Phi \) is finite \(\iff \) \(W \) is finite (\(\iff \) \(B \) is positive definite).

What happens when \(\Phi \) is infinite?

Simplest example in rank 2:

Matrix of \(B \) in the basis \((\alpha, \beta)\):
\[
\begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix}.
\]
Infinite root systems

Finite root systems are well studied: Φ is finite ⇔ W is finite (⇔ B is positive definite).

What happens when Φ is infinite?

Simplest example in rank 2:

Matrix of B in the basis (α, β): $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$.
Finite root systems are well studied:
Φ is finite \iff W is finite ($\iff B$ is positive definite).

What happens when $Φ$ is infinite?

Simplest example in rank 2:

Matrix of B in the basis (α, β):

$$
\begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix}.
$$
What is a root system?

\[\rho'_n = n\alpha + (n+1)\beta \]

\[\rho_n = (n+1)\alpha + n\beta \]

\[s_\beta(\alpha) = \rho'_2 \]

\[s_\beta(\alpha) = \rho'_3 \]

\[s_\beta(\alpha) = \rho'_4 \]

\[\beta = \rho'_1 \]

\[\alpha = \rho_1 \]

\[(a) \quad B(\alpha, \beta) = -1 \]

\[s_\alpha(v) = v - 2B(v, \alpha)\alpha. \]
Observations

- The **norms** of the roots tend to ∞;
- The **directions** of the roots tend to the direction of the isotropic cone Q of B:

\[
Q := \{ v \in V, \ B(v, v) = 0 \}.
\]

(in the example the equation is $v_\alpha^2 + v_\beta^2 - 2v_\alpha v_\beta = 0$, and $Q = \text{span}(\alpha + \beta)$.)
What if $B(\alpha, \beta) < -1$?

- Matrix of B: $\begin{bmatrix} 1 & \kappa \\ \kappa & 1 \end{bmatrix}$ with $\kappa < -1$. We write $\infty(\kappa)$.

- Then Q is the union of 2 lines.
What if $B(\alpha, \beta) < -1$?

- Matrix of B: $\begin{bmatrix} 1 & \kappa \\ \kappa & 1 \end{bmatrix}$ with $\kappa < -1$. We write $\infty(\kappa)$.

- Then Q is the union of 2 lines.
What if \(B(\alpha, \beta) < -1? \)

- Matrix of \(B \): \[
\begin{bmatrix}
1 \\
\kappa \\
1
\end{bmatrix}
\] with \(\kappa < -1 \). We write \(s_\alpha \) and \(s_\beta \).

- Then \(Q \) is the union of 2 lines.
What if $B(\alpha, \beta) < -1$?

- Matrix of B: $\begin{bmatrix} 1 & \kappa \\ \kappa & 1 \end{bmatrix}$ with $\kappa < -1$. We write $\infty(\kappa)$.
- Then Q is the union of 2 lines.

\[s_{\alpha} \quad s_{\beta} \]

\[\alpha = \rho_1 \quad \beta = \rho'_1 \]

\[\infty(-1.01) \]

\[s \quad t \]
(a) $B(\alpha, \beta) = -1$

$V = \{ v \in V \mid \ldots \}$

$\{ a \in \mathbb{R}^n \mid a \cdot v = 1 \}$

$\rho_n = (n+1)(n+1)$

How to see examples of higher rank?
How to see examples of higher rank?

Affine hyperplane
\[V_1 = \{ v \in V \mid \sum_{\alpha \in \Delta} v_{\alpha} = 1 \} \]

Normalized isotropic cone: \(\hat{Q} := Q \cap V_1 \)

Normalized roots
\[\hat{\rho} := \rho / \sum_{\alpha \in \Delta} \rho_{\alpha} \]

(a) \(B(\alpha, \beta) = -1 \)
(b) \(B(\alpha, \beta) = -1.01 < -1 \)
Other examples of infinite root systems in rank 3 and 4
Other examples of infinite root systems in rank 3 and 4.
Other examples of infinite root systems in rank 3 and 4

(a) $B(\alpha, \beta) = -1$
(b) $B(\alpha, \beta) = -1.01 < -1$

$\dim 2$

$\dim 3$

$\dim 4$

$\text{conv}(\Delta)$
The displayed size of a normalized root (in red in this last picture) is decreasing as the depth of the root is increasing.

\[dp(\rho) = 1 + \min \{k \mid \rho = s_{\alpha_1} s_{\alpha_2} \cdots s_{\alpha_k} (\alpha_{k+1}), \alpha_1, \ldots, \alpha_k, \alpha_{k+1} \in \Delta \}. \]
The “limit roots” lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R.)

Let Φ be a root system for an (infinite) Coxeter group, and $(\rho_n)_{n \in \mathbb{N}}$ an injective sequence in Φ. Then:

1. $||\rho_n||$ tends to ∞ (for any norm on V);
2. if the sequence of normalized root $\hat{\rho}_n$ has a limit ℓ, then
 $$\ell \in \hat{Q} \cap \text{conv}(\Delta).$$

Known in other contexts:

- Root systems of Lie algebras (Kac, 1990)
- Imaginary cone for Coxeter groups (Dyer, 2011)

∽∽ **Problem:** understand the set of possible limits, i.e., the accumulation points of $\hat{\Phi}$:

$$E(\Phi) := \text{Acc} \left(\hat{\Phi} \right) \quad (\text{“limit roots”}).$$
The “limit roots” lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R.)

Let Φ be a root system for an (infinite) Coxeter group, and $(\rho_n)_{n \in \mathbb{N}}$ an injective sequence in Φ. Then:

1. $||\rho_n||$ tends to ∞ (for any norm on V);
2. if the sequence of normalized root $\hat{\rho}_n$ has a limit ℓ, then $\ell \in \hat{Q} \cap \text{conv}(\Delta)$.

Known in other contexts:

- Root systems of Lie algebras (Kac, 1990)
- Imaginary cone for Coxeter groups (Dyer, 2011)

Problem: understand the set of possible limits, i.e., the accumulation points of $\hat{\Phi}$:

$$E(\Phi) := \text{Acc}(\hat{\Phi})$$

(“limit roots”).
The “limit roots” lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R.)

Let Φ be a root system for an (infinite) Coxeter group, and $(\rho_n)_{n \in \mathbb{N}}$ an injective sequence in Φ. Then:

1. $||\rho_n||$ tends to ∞ (for any norm on V);
2. if the sequence of normalized root $\hat{\rho}_n$ has a limit ℓ, then $\ell \in \hat{Q} \cap \text{conv}(\Delta)$.

Known in other contexts:

- Root systems of Lie algebras (Kac, 1990)
- Imaginary cone for Coxeter groups (Dyer, 2011)

ضح Problem: understand the set of possible limits, i.e., the accumulation points of $\hat{\Phi}$:

$$E(\Phi) := \text{Acc} \left(\hat{\Phi} \right) \quad \text{("limit roots")}.$$
How to construct some particular limit roots

Take two roots ρ_1, ρ_2 in Φ get a rank 2 reflection subgroup of W, and a root subsystem Φ'. Note:

- $\hat{\Phi}' \subset L(\hat{\rho}_1, \hat{\rho}_2)$;
- the isotropic cone for Φ' is $Q \cap \text{span}(\rho_1, \rho_2)$;
- \Rightarrow Limit roots for Φ': $E(\Phi') = Q \cap L(\hat{\rho}_1, \hat{\rho}_2)$ (0, 1 or 2 points).
The dihedral limit roots

Definition
We define the set $E_2(\Phi)$ of dihedral limit roots for the root system Φ as the subset of $E(\Phi)$ formed by the union of the $E(\Phi')$, for Φ' a root subsystem of rank 2 of Φ. Equivalently,

$$E_2(\Phi) := \bigcup_{\rho_1, \rho_2 \in \Phi} L(\hat{\rho}_1, \hat{\rho}_2) \cap Q.$$

Note: E_2 is countable.

Theorem (Hohlweg-Labbé-R.)
The set of dihedral limit roots E_2 is dense in E.

- E is closed, so $E = \overline{E_2}$;
- in general, E_2 is not equal to E. In fact sometimes $E = \hat{Q}!$
The dihedral limit roots

Definition

We define the set $E_2(\Phi)$ of **dihedral limit roots** for the root system Φ as the subset of $E(\Phi)$ formed by the union of the $E(\Phi')$, for Φ' a root subsystem of rank 2 of Φ. Equivalently,

$$E_2(\Phi) := \bigcup_{\rho_1, \rho_2 \in \Phi} L(\hat{\rho}_1, \hat{\rho}_2) \cap Q.$$

Note: E_2 is countable.

Theorem (Hohlweg-Labbé-R.)

The set of dihedral limit roots E_2 is **dense in E**.

- E is closed, so $E = \overline{E_2}$;
- in general, E_2 is not equal to E. In fact sometimes $E = \hat{Q}$!
The dihedral limit roots

Definition

We define the set $E_2(\Phi)$ of dihedral limit roots for the root system Φ as the subset of $E(\Phi)$ formed by the union of the $E(\Phi')$, for Φ' a root subsystem of rank 2 of Φ. Equivalently,

$$E_2(\Phi) := \bigcup_{\rho_1, \rho_2 \in \Phi} L(\hat{\rho}_1, \hat{\rho}_2) \cap \mathbb{Q}.$$

Note: E_2 is countable.

Theorem (Hohlweg-Labbé-R.)

The set of dihedral limit roots E_2 is dense in E.

- E is closed, so $E = \overline{E_2}$;
- in general, E_2 is not equal to E. In fact sometimes $E = \hat{\mathbb{Q}}$.
The dihedral limit roots

Definition

We define the set $E_2(\Phi)$ of dihedral limit roots for the root system Φ as the subset of $E(\Phi)$ formed by the union of the $E(\Phi')$, for Φ' a root subsystem of rank 2 of Φ. Equivalently,

$$E_2(\Phi) := \bigcup_{\rho_1, \rho_2 \in \Phi} L(\hat{\rho}_1, \hat{\rho}_2) \cap \mathbb{Q}.$$

Note: E_2 is countable.

Theorem (Hohlweg-Labbé-R.)

The set of dihedral limit roots E_2 is dense in E.

- E is closed, so $E = \overline{E_2}$;
- in general, E_2 is not equal to E. In fact sometimes $E = \hat{\mathbb{Q}}$!
Other properties, further questions

- How does E behave in regard to restriction to parabolic subgroups ($E(\Phi_I) \neq E(\Phi) \cap V_I$ in general!)
- Natural action of W on E, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.
- Take $x \in E$. Is it true that $\overline{W \cdot x} = E$?
- Study $\text{conv}(E)$, which equals the closure of Dyer’s “imaginary cone”.

Thank you!
Other properties, further questions

- How does E behave in regard to restriction to parabolic subgroups ($E(\Phi_I) \neq E(\Phi) \cap V_I$ in general!)

- Natural action of W on E, easy to describe geometrically... Faithfulness?

- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.

- Take $x \in E$. Is it true that $\overline{W \cdot x} = E$?

- Study $\text{conv}(E)$, which equals the closure of Dyer’s “imaginary cone”.
Other properties, further questions

- How does E behave in regard to restriction to parabolic subgroups ($E(\Phi_I) \neq E(\Phi) \cap V_I$ in general!)

- Natural action of W on E, easy to describe geometrically... Faithfulness?

- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.

- Take $x \in E$. Is it true that $\overline{W \cdot x} = E$?

- Study $\text{conv}(E)$, which equals the closure of Dyer’s “imaginary cone”.
Other properties, further questions

- How does E behave in regard to restriction to parabolic subgroups ($E(\Phi_I) \neq E(\Phi) \cap V_I$ in general!)
- Natural action of W on E, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.
- Take $x \in E$. Is it true that $\overline{W \cdot x} = E$?
- Study $\text{conv}(E)$, which equals the closure of Dyer’s “imaginary cone”.
Other properties, further questions

- How does E behave in regard to restriction to parabolic subgroups ($E(\Phi_I) \neq E(\Phi) \cap V_I$ in general!)

- Natural action of W on E, easy to describe geometrically... Faithfulness?

- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.

- Take $x \in E$. Is it true that $\overline{W \cdot x} = E$?

- Study conv(E), which equals the closure of Dyer’s “imaginary cone”.
Other properties, further questions

- How does E behave in regard to restriction to parabolic subgroups ($E(\Phi_I) \neq E(\Phi) \cap V_I$ in general!)

- Natural action of W on E, easy to describe geometrically... Faithfulness?

- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.

- Take $x \in E$. Is it true that $\overline{W \cdot x} = E$?

- Study $\text{conv}(E)$, which equals the closure of Dyer’s “imaginary cone”.
Other properties, further questions

- How does E behave in regard to restriction to parabolic subgroups ($E(\Phi_i) \neq E(\Phi) \cap V_i$ in general!)

- Natural action of W on E, easy to describe geometrically... Faithfulness?

- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.

- Take $x \in E$. Is it true that $\overline{W \cdot x} = E$?

- Study $\text{conv}(E)$, which equals the closure of Dyer’s “imaginary cone”.

Thank you!
Other properties, further questions

- How does E behave in regard to restriction to parabolic subgroups ($E(\Phi_I) \neq E(\Phi) \cap V_I$ in general!)
- Natural action of W on E, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.
- Take $x \in E$. Is it true that $\overline{W \cdot x} = E$?
- Study $\text{conv}(E)$, which equals the closure of Dyer’s “imaginary cone”.

Thank you!
A fractal phenomenon?
(conjectures/questions, work in progress with Ch. Hohlweg)

\[\text{If } \hat{Q} \subseteq \text{conv}(\Delta), \text{ then } E(\Phi) = \hat{Q} \ ? \]

\[\text{In general: } E(\Phi) = \hat{Q} \setminus \text{all the images by the action of } W \text{ of the parts of } \hat{Q} \text{ outside the simplex, i.e.:} \]

\[E(\Phi) = \hat{Q} \cap \bigcap_{w \in W} w \cdot \text{conv}(\Delta) \ ? \]