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Triangulations of Cayley and Tutte polytopes
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Abstract. Cayley polytopes were defined recently as convex hulls of Cayley compositions introduced by Cayley in
1857. In this paper we resolve Braun’s conjecture, which expresses the volume of Cayley polytopes in terms of the
number of connected graphs. We extend this result to a two-variable deformations, which we call Tutte polytopes.
The volume of the latter is given via an evaluation of the Tutte polynomial of the complete graph.
Our approach is based on an explicit triangulation of the Cayley and Tutte polytope. We prove that simplices in
the triangulations correspond to labeled trees and forests. The heart of the proof is a direct bijection based on the
neighbors-first search graph traversal algorithm.

Résumé. Les polytopes de Cayley ont été définis récemment comme des ensembles convexes de compositions de
Cayley introduits par Cayley en 1857. Dans ce papier, nous résolvons la conjecture de Braun. Cette dernière exprime
le volume du polytopes de Cayley en termes du nombre de graphes connexes. Nous étendons ce résultat à des
déformations de polytopes de Cayley à deux variables, à savoir les polytopes de Tutte. Le volume de ces derniers est
donné par une évaluation du polynôme de Tutte du graphe complet.
Notre approche est basée sur une triangulation explicite des polytopes de Cayley et Tutte. Nous démontrons que les
simplexes de ces triangulations correspondent à des arbres marqués. La pierre angulaire de notre démonstration est
une bijection directe basées sur l’algorithme de la recherche du premier voisin sur le graphe.
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1 Introduction
In the past several decades, there has been an explosion in the number of connections and applications
between geometric and enumerative combinatorics. Among those, a number of new families of “combina-
torial polytopes” were discovered, whose volume has a combinatorial significance. Still, whenever a new
family of n-dimensional polytopes is discovered whose volume is a familiar integer sequence (up to scal-
ing), it feels like a “minor miracle”, a familiar face in a crowd in a foreign country, a natural phenomenon
in need of an explanation.

In this extended abstract we prove a surprising conjecture due to Ben Braun [BBL], which expresses
the volume of the Cayley polytope in terms of the number of connected labeled graphs. Our proof is
robust enough to allow generalizations in several directions, leading to the definition of Tutte polytopes,
and largely explaining this latest “minor miracle”.

We start with the following classical result.
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Theorem 1 (Cayley, 1857) The number of integer sequences (a1, . . . , an) such that 1 ≤ a1 ≤ 2, and 1 ≤
ai+1 ≤ 2 ai for 1 ≤ i < n, is equal to the total number of partitions of integers N ∈ {0, 1, . . . , 2n − 1}
into parts 1, 2, 4, . . . , 2n−1.

Although Cayley’s original proof [Cay] uses only elementary generating functions, it inspired a num-
ber of other proofs and variations [APRS, BBL, CLS, KP2]. It turns out that Cayley’s theorem is best
understood in a geometric setting, as an enumerative problem for the number of integer points in an
n-dimensional polytope defined by the inequalities as in the theorem.

Following [BBL], define the Cayley polytope Cn ⊂ Rn by inequalities:

1 ≤ x1 ≤ 2 , and 1 ≤ xi ≤ 2xi−1 for i = 2, . . . , n ,

so that the number of integer points in Cn is the number of integer sequences (a1, . . . , an), and the
number of certain partitions, as in Cayley’s theorem.

The polytope C2 is the trapezoid with bold boundaries in Figure 1 with t = 1. The polytope C3 is
shown from two different angles on the right-hand side of Figure 3. Note the volume of these polytopes
is 2 and 19/3, respectively.

In [BBL], Braun made the following interesting conjecture about the volume of Cn. Denote by Cn the
set of connected graphs (with no loops or multiple edges) on n nodes. (To avoid ambiguity, throughout
the paper, we distinguish graph nodes from polytope vertices.) Let Cn =

∣∣Cn∣∣.
Theorem 2 (Formerly Braun’s conjecture) Let Cn ⊂ Rn be the Cayley polytope defined above. Then
vol Cn = Cn+1/n!.

This is the first in a long chain of results we present in [KP1], leading to the following general result.
Let 0 < q ≤ 1 and t ≥ 0. Define the Tutte polytope Tn(q, t) ⊂ Rn by inequalities: xn ≥ 1− q and

q xi ≤ q (1 + t)xi−1 − t (1− q)(1− xj−1) , (1)

where 1 ≤ j ≤ i ≤ n and x0 = 1. Note that for j = 1 and i > 1, the inequality is xi ≤ (1 + t)xi−1,
while for i = j = 1, it is xi ≤ 1 + t.

Theorem 3 (Main result) Let Tn(q, t) ⊂ Rn be the Tutte polytope defined above. Then

vol Tn(q, t) = tnTKn+1(1 + q/t, 1 + t) /n!,

where TH(x, y) denotes the Tutte polynomial of the graph H .

One can show that in certain sense, Tutte polytopes are a two variable deformation of the Cayley
polytope:

lim
q→0+

Tn(q, 1) = Cn .

To see this, note that for t = 1, the inequalities with j = 1 in (1) give xi ≤ 2xi−1, and for j > 1, we get
xj−1 ≥ 1 as q → 0+.

Now, recall that TH(1, 2) is the number of connected subgraphs of H , a standard property of Tutte
polynomials (see e.g. [Bol]). Letting q → 0+ and t = 1 shows that Theorem 2 follows immediately from
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Theorem 3. In other words, our main theorem is an advanced generalization of Braun’s Conjecture (now
Theorem 2).

The proof of both Theorem 2 and 3 is based on explicit triangulations of polytopes. The simplices
in the triangulations have a combinatorial nature, and are in bijection with labeled trees (for the Cayley
polytope) and forests (for the Tutte polytope) on n + 1 nodes. This bijection is based on a variant of
the neighbors-first search (NFS) graph traversal algorithm studied by Gessel and Sagan [GS]. Roughly
speaking, in the case of Cayley polytopes, the volume of a simplex in bijection with a labeled tree T
corresponds to the set of labeled graphs for which T is the output of the NFS.

Rather than elaborate on the inner working of the proof, we illustrate the idea in the following example.

Example 4 The triangulation of T2(q, t) is shown in Figure 1. For example, the top triangle is labeled by
the tree with edges 12 and 13; its area, multiplied by 2!, is t2(1 + t), and it also has two graphs that map
into it, the tree itself (with two edges) and the complete graph on 3 nodes (with three edges).
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Fig. 1: A triangulation of the Tutte polytope T2(q, t).

The rest of the extended abstract is structured as follows. We begin with definitions and basic com-
binatorial results in Section 2. In Sections 3 we construct a triangulation of the Cayley polytope. Tutte
polytopes are analyzed in Section 4. We conclude with final remarks in Section 5. The reader should
consult [KP1] for details.

2 Combinatorial and geometric preliminaries
A labeled tree is a connected acyclic graph. We take each labeled tree to be rooted at the node with the
maximal label. A labeled forest is an acyclic graph. Its components are labeled trees, and we root each
of them at the node with the maximal label. An unlabeled plane forest is a graph without cycles in which
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we do not distinguish the nodes, but we choose a root in each component, which is an unlabeled plane
tree, and the subtrees at any node, as well as the components of the graph, are linearly ordered (from left
to right).

For a (multi)graph G on the set of nodes V , denote by k(G) the number of connected components of
G, and by e(G) the number of edges of G. Consider the polynomial

ZG(q, t) =
∑
H⊆G

qk(H)−k(G)te(H),

where the sum is over all spanning subgraphs H of G. This polynomial is a statistical sum in the random
cluster model in statistical mechanics. It is related to the Tutte polynomial

TG(x, y) =
∑
H⊆G

(x− 1)k(H)−k(G)(y − 1)e(H)−|V |+k(H)

by the equation
TG(x, y) = (y − 1)k(G)−|V | ZG((x− 1)(y − 1), y − 1) .

Tutte’s classical result is a combinatorial interpretation of the coefficients of the Tutte polynomial [Tut].
He showed that for a connected graph G we have T (x, y) =

∑
T xia(T ) yea(T ) , where the summation is

over all spanning trees T inG; here ia(T ) and ea(T ) denote the number of internally active and externally
active edges in T , respectively. While both ia(T ) and ea(T ) depend on the ordering of the edges in G,
the sum on the right does not (see [Bol, §X.5] for definitions and details).

For the complete graph Kn, the Tutte polynomial and its evaluations are well studied (see [Tut, Ges2]).
In this case, under a lexicographic ordering of edges, the statistics ia(T ) and ea(T ) can be interpreted
combinatorially [Ges2, GS] via the neighbor-first search (NFS) introduced in [GS], a variant of which is
also crucial for our purposes. Take a labeled connected graph G on n + 1 nodes. Choose the node with
the maximal label, i.e. n + 1, as the first active node (and also the 0-th visited node). At each step, visit
the previously unvisited neighbors of the active node in decreasing order of their labels, and make the
one with the smallest label the new active node. Note that in [GS], the NFS starts at the node with the
minimal label, and the neighbors of the active node are visited in increasing order of their labels. If all
the neighbors of the active node have been visited, backtrack to the last visited node that has not been an
active node, and make it the new active node. The resulting search tree T is a labeled tree on n+ 1 nodes,
we denote it Φ(G) (see Example 5).

Example 5 Let G be the graph on the left-hand side of Figure 2. The neighbors-first search starts in node
12 and visits the other nodes in order 11, 10, 6, 8, 7, 9, 3, 1, 4, 2, 5. The resulting search tree Φ(G) is on
the right-hand side of Figure 2. The edges of G that are not in Φ(G) are dashed.

In a special case, the polynomial Invn(y) = TKn
(1, y) y1−n is the classical inversion polynomial [MR]

(see also [Ges1, GW, GouJ]), a generating function for the number of spanning trees with respect to
inversions.

3 A triangulation of the Cayley polytope
Attach a coordinate of the form xi/2

j to each node of the tree T rooted at the node with label n + 1,
where i is the position of the node in the NFS, and j is a non-negative integer defined as follows. Attach
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Fig. 2: A connected graph and its NFS tree.

x0 = 1 to the root; and if the node v has coordinate xi/2j and successors v1, . . . , vk (in increasing order
of their labels), then make the coordinates of vk, . . . , v1 to be xi′/2j , xi′+1/2

j+1, . . . , xi′+k−1/2
j+k−1.

See Figure 3, left, for an example.
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Fig. 3: Coordinates in a tree. A triangulation of C3 from two different angles.

Define α(T ) =
∑
i ji. For the next lemma, which gives another characterization of α(T ), note first

that in a rooted labeled tree (as well as in a plane tree), we have the natural concept of an up (respectively,
down) step, i.e. a step from a node to its parent (respectively, from a node to its child), as well as a down
right step, i.e. a down step v → v′′ that follows an up step v′ → v so that v′′ has a larger label than (or is
the the right of) v′. Call a path of length k ≥ 2 in a rooted labeled tree (or a plane tree) a cane path if the
first k − 1 steps are up and the last one is down right. Some cane paths in the tree from Figure 3 are from
9 to 8, from 3 to 11, and from 2 to 4.

Lemma 6 For a node v with coordinate xi/2j , j is the number of cane paths in T that start in v. In
particular, α(T ) is the number of cane paths in T .

Arrange the coordinates of the nodes 1, . . . , n according to the labels. More precisely, define

ST = {(x1, . . . , xn) : 1 ≤ xi1/2j1 ≤ xi2/2j2 ≤ . . . ≤ xin/2jn ≤ 2},
where the coordinate of the node with label k is xik/2

jk . For the tree from Figure 3, the corresponding
inequalities are

1 ≤ x8

16
≤ x10

4
≤ x7

8
≤ x9

2
≤ x11 ≤

x3

4
≤ x5

8
≤ x4

4
≤ x6

8
≤ x2

2
≤ x1 ≤ 2 .
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Theorem 7 For every labeled tree T on n+ 1 nodes, the set ST is a simplex, and

n! volST = |{G ∈ Cn+1, s.t. Φ(G) = T}| = 2α(T ).

Furthermore, simplices ST triangulate the Cayley polytope Cn. In particular, n! volCn = |Cn+1|.
Figure 3, right, shows two views of the resulting triangulation of C3. Note that the theorem implies

Braun’s conjecture (Theorem 2). What follows is a brief sketch of the proof of Theorem 7.
Erase all labels (not the coordinates) from the labeled tree Φ(G), to make it into a plane tree Ψ(G). For

each node v of a plane tree T with successors with coordinates xi/2j , xi+1/2
j+1, . . . , xi+k−1/2

j+k−1,
take inequalities 1 ≤ xi+k−1/2

j+k−1 ≤ . . . ≤ xi+1/2
j+1 ≤ xi/2j ≤ 2. Equivalently, take inequalities

2j ≤ xi ≤ 2j+1

2j+1 ≤ xi+1 ≤ 2xi
...

2j+k−1 ≤ xi+k−1 ≤ 2xi+k−2.

Denote the resulting polytope DT . It is easy to see that DT is triangularized by simplices ST ′ , where T ′

runs over labeled trees whose underlying plane tree is T . We have to prove that {DT : T a plane tree} is
a subdivision of Cn.

The Cayley polytope Cn consists of all points (x1, . . . , xn) for which 1 ≤ x1 ≤ 2 and 1 ≤ xi ≤ 2xi−1

for i = 2, . . . , n. The main idea of the proof of Theorem 7 is to divide these inequalities into “narrower”
inequalities. We state this precisely in the following example, and then in full generality.

Example 8 Since 1 ≤ x2 ≤ 2x1 and 2x1 ≥ 2, we have either 1 ≤ x2 ≤ 2 or 2 ≤ x2 ≤ 2x1. If
1 ≤ x2 ≤ 2, then either 1 ≤ x3 ≤ 2 or 2 ≤ x3 ≤ 2x2. On the other hand, if 2 ≤ x2 ≤ 2x1, then 2x2 ≥ 4,
so we have 1 ≤ x3 ≤ 2, 2 ≤ x3 ≤ 4 or 4 ≤ x3 ≤ 2x2. The following table presents all such choices for
n = 4.

1 ≤ x1 ≤ 2 1 ≤ x2 ≤ 2 1 ≤ x3 ≤ 2 1 ≤ x4 ≤ 2

2 ≤ x4 ≤ 2x3

2 ≤ x3 ≤ 2x2 1 ≤ x4 ≤ 2

2 ≤ x4 ≤ 4

4 ≤ x4 ≤ 2x3

2 ≤ x2 ≤ 2x1 1 ≤ x3 ≤ 2 1 ≤ x4 ≤ 2

2 ≤ x4 ≤ 2x3

2 ≤ x3 ≤ 4 1 ≤ x4 ≤ 2

2 ≤ x4 ≤ 4

4 ≤ x4 ≤ 2x3

4 ≤ x3 ≤ 2x2 1 ≤ x4 ≤ 2

2 ≤ x4 ≤ 4

4 ≤ x4 ≤ 8

8 ≤ x4 ≤ 2x3

Lemma 9 The Cayley polytope Cn can be subdivided into polytopes defined by inequalities for variables
x1, . . . , xn so that: the inequalities for x1 are 1 ≤ x1 ≤ 2; the inequalities for each xi are either
2ji ≤ xi ≤ 2ji+1 or 2ji ≤ xi ≤ 2xi−1 (only if i ≥ 2) for some ji ≥ 0; for i ≥ 2, we have ji ≤ ji−1 + 1,
and ji = ji−1 + 1 if and only if the inequalities for xi are 2ji ≤ xi ≤ 2xi−1.
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We claim the the polytopes constructed in the lemma are precisely the polytopes DT . So say that
we have inequalities satisfying the conditions of the lemma and defining a polytope P. Our goal is to
construct the unique plane tree T satisfying DT = P.

Assume that k, 1 ≤ k ≤ n, is the largest integer so that the inequalities for xi, i = 2, . . . , k, are of the
form 2i−1 ≤ xi ≤ 2xi−1. In particular, the inequalities for xk+1 are not of the form 2k ≤ xk+1 ≤ 2xk,
but instead 2jk+1 ≤ xk+1 ≤ 2jk+1+1 for some jk+1, 0 ≤ jk+1 ≤ k − 1.

There exist unique integers a1, . . . , ak ≥ 1, a1 + . . .+ ak = n− k, satisfying the following properties:

jk+1, . . . , jk+a1 ≥ k − 1, jk+a1+1 < k − 1

jk+a1+1, . . . , jk+a1+a2 ≥ k − 2, jk+a1+a2+1 < k − 2

jk+a1+a2+1, . . . , jk+a1+a2+a3 ≥ k − 3, ja1+a2+a3+1 < k − 3

...
...

Note that if a1 ≥ 1, then jk+1 = k − 1, if a2 ≥ 1, then jk+a1+1 = k − 2, etc.

In other words, among the inequalities for xk+1, . . . , xn, the first a1 inequalities have at least 2k−1

on the left, the next a2 inequalities have at least 2k−2 on the left, etc. Say that among the inequalities
for xk+1, . . . , xn, the first a1 inequalities define the polytope 2k−1P1, the next a2 inequalities define the
polytope 2k−2P2, etc. By induction, the polytopes P1, . . . ,Pk are of the form DT1

, . . . ,DTk
for some

plane trees T1, . . . , Tk on a1 + 1, a2 + 1, . . . , ak + 1 nodes. Define the tree T by taking a root with k
successors and subtrees T1, . . . , Tk. One can check that indeed DT = P.

Example 10 Say that

P =


(x1, . . . , x11) : 1 ≤ x1 ≤ 2, 2 ≤ x2 ≤ 2x1,
4 ≤ x3 ≤ 2x2, 4 ≤ x4 ≤ 8, 8 ≤ x5 ≤ 2x4,
8 ≤ x6 ≤ 16, 8 ≤ x7 ≤ 16, 16 ≤ x8 ≤ 2x7,
2 ≤ x9 ≤ 4, 4 ≤ x10 ≤ 2x9, 1 ≤ x11 ≤ 2

 .

We have k = 3 and a1 = 5, a2 = 2, a3 = 1. Furthermore,

P1 =

{
(x1, . . . , x5) : 1 ≤ x1 ≤ 2, 2 ≤ x2 ≤ 2x1,
2 ≤ x3 ≤ 4, 2 ≤ x4 ≤ 4, 4 ≤ x5 ≤ 2x4

}
,

P2 = {(x1, x2) : 1 ≤ x1 ≤ 2, 2 ≤ x2 ≤ 2x1},
P3 = {x1 : 1 ≤ x1 ≤ 2}.

The corresponding subtrees T1, T2, T3 of the tree T is shown with full lines in Figure 4.

4 A triangulation of the Tutte polytope
In this section, we sketch the construction of a triangulation of the Tutte polytope that proves Theorem 3.
Say we are given a labeled forest F . Order the components so that the maximal labels in the components
are decreasing. If a node v has the maximal label in its component and there are i nodes in previous
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Fig. 4: The plane tree corresponding to a subpolytope.

components, choose the coordinate of v to be t(xi − 1 + q). In particular, the coordinate of the node with
label n+ 1 is t(x0 − 1 + q) = qt. Every other node v has a coordinate of the form

qxi − (1− q)(1− xl)
(1 + t)j

− (xl − 1 + q),

where i is the position of v in NFS, j is the number of cane paths in F starting in v, and xl is the coordinate
of the vertex with the maximal label in the component of v. Denote the coordinate of the node with label
k in a forest F by c(k, F ; t).

Define

SF (q, t) = {(x1, . . . , xn) : 0 ≤ c(1, F ; q, t) ≤ c(2, F ; q, t) ≤ . . . ≤ c(n+ 1, F ; q, t) = qt} .

Denote by Gn the set of all (not necessarily connected) graphs on n vertices. Order the components so
that the maximal labels in the components are decreasing. Perform the NFS on each component of G (see
Section 2). The result is a labeled forest, we denote it by Φ(G) = F .

Theorem 11 For every labeled forest F on n+ 1 nodes, the set SF (q, t) is a simplex, and

n! volSF (q, t) =
∑

G∈Gn+1 , Φ(G)=F

qk(G)−1t|E(G)| = qk(F )−1t|E(F )|(1 + t)α(F ).

Furthermore, simplices SF (q, t) triangulate the Tutte polytope Tn(q, t). In particular,

n! volTn(q, t) =
∑

G∈Gn+1

qk(G)−1t|E(G)| = ZKn+1
(q, t).

This implies Theorem 3.

5 Final remarks
5.1
It might seem rather mysterious how we got from the intuitive construction of Section 3 to the complicated
definition of simplices in Section 4. Indeed, as mentioned in the Introduction, Theorems 2 and 3 are just
the first and the final step in a series of constructions that include the Gayley polyope, the t-Cayley polytope
and the t-Gayley polytope. Consult [KP1] for all these constructions, as well as for omitted proofs and
some applications. See [KP2] for an application to the enumeration of labeled connected graphs.
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Among these omitted results, let us just mention the one concerning vertices of the the Tutte polytope. It
is almost immediate from the definition that the set of vertices of Cn is the set

Vn =
{

(x1, . . . , xn) : x1 ∈ {1, 2}, xi ∈ {1, 2xi−1} for i = 2, . . . , n
}
.

Let Vn(q, t) be the set Vn(t) in which we replace every power of 2 by the same power of 1 + t, and the
trailing 1’s of each point by 1− q. It is much less obvious that the set of vertices of Tn(q, t) is precisely
Vn(q, t). For example, the coordinates of the vertices of T3(q, t) are given by lines in the following table:

1 + t (1 + t)2 (1 + t)3

1 + t (1 + t)2 1− q
1 + t 1 1 + t
1 + t 1− q 1− q
1 1 + t (1 + t)2

1 1 + t 1− q
1 1 1 + t

1− q 1− q 1− q

5.2
By now, there are quite a few papers on “combinatorial volumes”, i.e. expressing combinatorial sequences
as volumes of certain polytopes. These include Euler numbers as volumes of hypersimplices [Sta1]
(see also [ABD, ERS, LP, Pos]), Catalan numbers [GGP], Cayley numbers as volumes of permutohe-
dra (see [Pak, Zie]), the number of linear extensions of posets [Sta2], etc.

Let us mention a mysterious connection of our results to those in [SP], where the number of (gen-
eralized) parking functions appears as the volume of a certain polytope, which is also combinatorially
equivalent to an n-cube. The authors observe that in a certain special case, their polytopes have (scaled)
volume the inversion polynomial Invn(t), compared to tn Invn(1 + t) for the t-Cayley polytopes. The
connection between these two families of polytopes is yet to be understood, and the authors intend to
pursue this in the future.

In this connection, it is worth noting that Theorem 3 and our triangulation construction seem to be
fundamentally about labeled trees rather than parking functions, since the full Tutte polynomial TKn(q, t)
seems to have no known combinatorial interpretation in the context of parking functions (cf. [Sta3, Hag]).
Curiously, the specialization TG(1, t) has a natural combinatorial interpretation for G-parking functions
for general graphs [CL].

5.3

It is worth noting that all simplices in the triangulation of the Cayley polytopes are Schläfli orthoschemes
(simplices with orthogonal sides), which play an important role in combinatorial geometry. For example,
in McMullen’s polytope algebra (which formalizes properties of scissor congruence), orthoschemes form
a linear basis [McM] (see also [Dup, Pak]). Moreover, Hadwiger’s conjecture states that every convex
polytope in Rd can be triangulated into a finite number of orthoschemes [Had] (see also [BKKS]).

Let us emphasize here that not all simplices of triangulations constructed in Section 4 are orthoschemes.
Let us also mention that triangulations of polytopes DT and DF given by ST and SF are the usual
staircase triangulations of the products of simplices (see e.g. [DRS, §6.2]).
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5.4
In a follow-up note [KP2], we prove Cayley’s theorem (Theorem 1) by an explicit volume-preserving
map, mapping integer points in Cn into a simplex corresponding to integer partitions as in Theorem 1, a
rare result similar in spirit to [PV]. As an application of our Theorem 2, we conclude that the volume of
the convex hull of these partitions is also equal to Cn+1/n!. While perhaps not surprising to the experts in
the field [Bar], the integer points in these polytopes have a completely different structure than polytopes
themselves.

5.5
The neighbors-first search used in our construction was previously studied in [GS] in the context of the
Tutte polynomial of a complete graph. Still, we find its appearance here somewhat bemusing as other
graph traversal algorithms, such as depth-first search (DFS) and breadth-first search (BFS), are both more
standard in algorithmic literature [Knu]. In fact, we learned that it was used in [GS] only after much of
this work has been finished.

It is interesting to see what happens under graph traversal algorithms as well. In the pioneering pa-
per [GW], Gessel and Wang showed that the identity tn−1 Invn(1 + t) = Fn(t) can be viewed as the
result of the DFS algorithm mapping connected graphs into search trees. We do not know what happens
for BFS, but surprisingly the algorithm exploring edges of the graph lexicographically, from smallest to
largest, also makes sense. It was shown by Crapo (in a different language, and for general matroids) to give
internal and external activities [Cra]. In conclusion, let us mention that BFS, DFS and NFS are special
cases of a larger class of searches known to define combinatorial bijections in a related setting [CP].
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