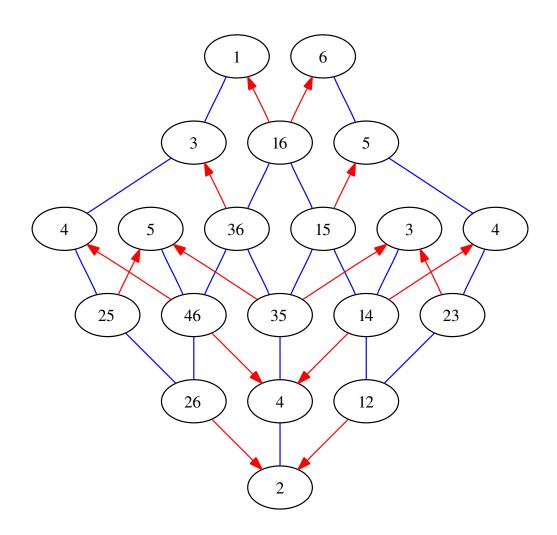
ADMISSIBLE W-GRAPHS

 ${\rm JOHN~R.~STEMBRIDGE}~\langle {\tt jrs@umich.edu} \rangle$

Contents

- 1. General W-Graphs
- 2. Admissible W-Graphs
- 3. The Agenda
- 4. The Admissible Cells in Rank 2
- 5. Combinatorial Characterization



1. General W-Graphs

Let (W, S) be a Coxeter system, $S = \{s_1, \ldots, s_n\}$.

Primarily, W = a finite Weyl group.

Let $\mathcal{H} = \mathcal{H}(W, S) =$ the associated Iwahori-Hecke algebra over $\mathbb{Z}[q^{\pm 1/2}]$. = $\langle T_1, \dots, T_n \mid (T_i - q)(T_i + 1) = 0$, braid relations \rangle .

DEFINITION. An S-labeled graph is a triple $\Gamma = (V, m, \tau)$, where

- \bullet V is a (finite) vertex set,
- $m: V \times V \to \mathbb{Z}[q^{\pm 1/2}]$ (i.e., a matrix of edge-weights),
- $\bullet \ \tau: V \to 2^S = 2^{[n]}.$

NOTATION. Write $m(u \to v)$ for the (u, v)-entry of m.

Let $M(\Gamma) = \text{free } \mathbb{Z}[q^{\pm 1/2}]\text{-module with basis } V.$

Introduce operators T_i on $M(\Gamma)$:

$$T_i(v) = \begin{cases} qv & \text{if } i \notin \tau(v), \\ -v + q^{1/2} \sum_{u:i \notin \tau(u)} m(v \to u)u & \text{if } i \in \tau(v). \end{cases}$$

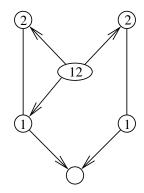
DEFINITION (K-L). Γ is a W-graph if this yields an \mathcal{H} -module.

NOTE: $(T_i - q)(T_i + 1) = 0$ (always), so W-graph \Leftrightarrow braid relations.

$$T_i(v) = \begin{cases} qv & \text{if } i \notin \tau(v), \\ -v + q^{1/2} \sum_{u: i \notin \tau(u)} m(v \to u)u & \text{if } i \in \tau(v). \end{cases}$$
 (1)

Remarks.

- Kazhdan-Lusztig use T_i^t , not T_i .
- Restriction: for $J \subset S$, $\Gamma|_J := (V, m, \tau|_J)$ is a W_J -graph.
- At q = 1, we get a W-representation.
- However, braid relations at $q = 1 \not\Rightarrow W$ -graph:



• If $\tau(v) \subseteq \tau(u)$, then (1) does not depend on $m(v \to u)$.

Convention. $m(v \to u) := 0$ whenever $\tau(v) \subseteq \tau(u)$.

DEFINITION. A W-cell is a strongly connected W-graph.

For every W-graph Γ , $M(\Gamma)$ has a filtration whose subquotients are cells.

Typically, cells are not irreducible as \mathcal{H} -reps or W-reps.

However (Gyoja, 1984):

if W is finite every irrep may be realized as a W-cell.

2. Admissible W-graphs

 \mathcal{H} has a distinguished basis $\{C_w : w \in W\}$ (the Kazhdan-Lusztig basis). The action of T_i on C_w is encoded by a W-graph $\Gamma_W = (W, m, \tau)$, where

- $\tau(v) = \{s \in S : \ell(sv) < \ell(v)\}$ (left descent set),
- m is determined by the Kazhdan-Lusztig polynomials:

$$m(u \to v) = \begin{cases} \mu(u, v) + \mu(v, u) & \text{if } \tau(u) \not\subseteq \tau(v), \\ 0 & \text{if } \tau(u) \subseteq \tau(v), \end{cases}$$

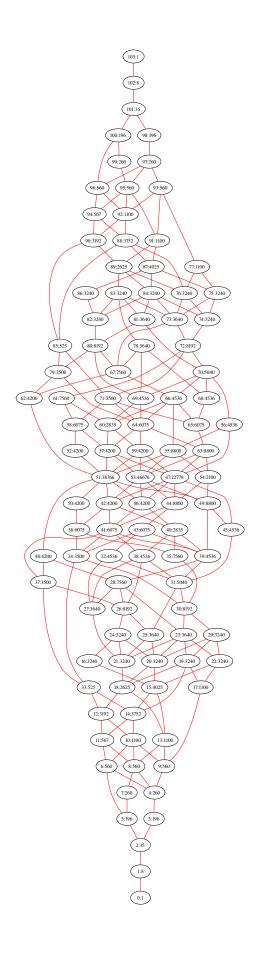
where $\mu(u,v) = \text{coeff.}$ of $q^{(\ell(v)-\ell(u)-1)/2}$ in $P_{u,v}(q)$ (= 0 unless $u \leq v$).

Remarks.

- This graph is generally very sparse, and has edge weights in \mathbb{Z} .
- The cells of Γ_W decompose the regular representation of \mathcal{H} .
- These cells are often not irreducible as \mathcal{H} -reps or W-reps.
- For all W of interest (finite or crystallographic), we know that $P_{u,v}(q)$ has nonnegative coefficients.
 - \bullet These W-graphs are **edge-symmetric**; i.e.,

$$m(u \to v) = m(v \to u)$$
 if $\tau(u) \not\subseteq \tau(v)$ and $\tau(v) \not\subseteq \tau(u)$. (2)

- If $\mu(u,v) \neq 0$, then $\ell(u) \neq \ell(v) \mod 2$, so these graphs are bipartite.
- (Vogan) Similar W-graphs, cells, and K-L polynomials exist for Harish-Chandra modules (\approx real Lie group reps).

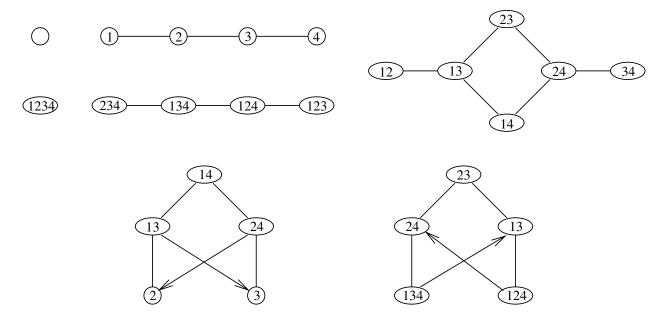


Definition. An S-labeled graph $\Gamma = (V, m, \tau)$ is admissible if

- it is edge-symmetric; i.e., $m(u\to v)=m(v\to u) \ \text{ if } \tau(u)\not\subseteq \tau(v) \text{ and } \tau(v)\not\subseteq \tau(u),$
- all edge weights $m(u \to v)$ are nonnegative integers, and
- it is bipartite.

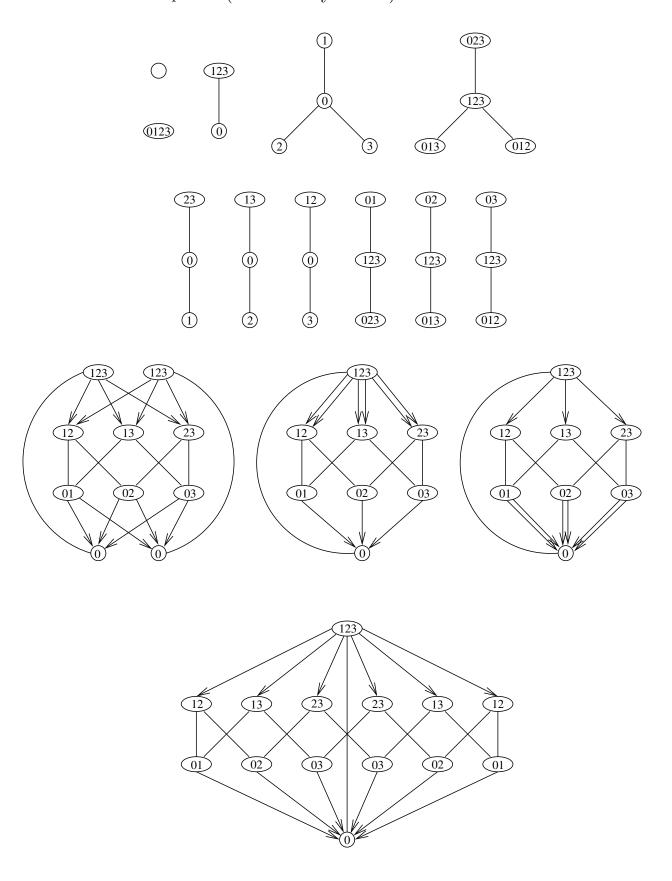
MAIN CONTENTION. These axioms capture the W-graphs that we care about, and are sufficiently rigid that there should be few "synthetic" cells. Sufficient understanding of admissible W-cells could yield constructions of K-L cells without having to compute K-L polynomials.

EXAMPLE. The admissible A_4 -cells:



All of these are K-L cells; none are synthetic.

The admissible D_4 -cells (three are synthetic):



3. The Agenda

PROBLEM 1 (W finite). Are there finitely many admissible W-cells?

- Confirmed for $A_1, \ldots, A_9, B_2, B_3, D_4, D_5, D_6, E_6, \text{ and rank 2.}$
- What about $W_1 \times W_2$ -cells?

PROBLEM 2. Classify/generate all admissible W-cells.

- Are the only admissible A_n -cells the K-L cells?
- Caution (McLarnan-Warrington): Interesting things happen in A_{15} .

Problem 3. Understand "combinatorial rigidity" for cells.

- Rigidity means $M(\Gamma_1) \cong M(\Gamma_2)$ (as W-reps) $\Rightarrow \Gamma_1 \cong \Gamma_2$.
- Example: Are K-L cells rigid? True for A_n .
- Admissible W-cells are not rigid in general.

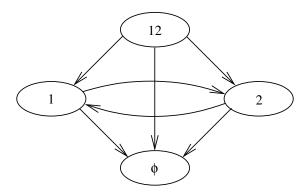
PROBLEM 4. Understand "compressibility" of cells.

• A given W-cell or W-graph should be reconstructible from a small amount of data. (One possible approach: branching rules).

4. The Admissible Cells in Rank 2

Consider $W = I_2(m), m < \infty$. (When $m = \infty$, anything goes.)

Given an $I_2(m)$ -graph, partition the vertices according to τ :



Focus on non-trivial cells: $\tau(v) = \{1\}$ or $\{2\}$ for all $v \in V$.

Encode edge weights $\{1\} \to \{2\}$ (resp., $\{2\} \to \{1\}$) by a matrix A (resp. B).

The conditions on A and B are as follows:

- m = 2: A = 0, B = 0.
- m = 3: AB = 1, BA = 1.
- m = 4: ABA = 2A, BAB = 2B.
- m = 5: ABAB 3AB + 1 = 0, BABA 3BA + 1 = 0.

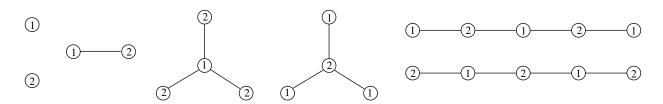
:

Remarks.

- If we assume only \mathbb{Z} -weights, no classification is possible (cf. m=3).
- Edge symmetry $\Leftrightarrow A = B^t$.
- When m = 3, edge weights $\in \mathbb{Z}^{\geqslant 0} \Rightarrow$ edge symmetry, but not in general.

THEOREM 1. A 2-colored graph is an admissible $I_2(m)$ -cell iff it is a properly 2-colored A-D-E Dynkin diagram whose Coxeter number divides m.

EXAMPLE. The Dynkin diagrams with Coxeter number dividing 6 are A_1 , A_2 , D_4 , and A_5 . Therefore, the (nontrivial) admissible G_2 -cells are



NOTE: The nontrival K-L cells for $I_2(m)$ are paths of length m-2.

Proof Sketch. Let Γ be any properly 2-colored graph.

Let
$$M = \begin{bmatrix} 0 & B \\ A & 0 \end{bmatrix}$$
 encode the edge weights of Γ .

Let $\phi_m(t)$ be the Chebyshev polynomial such that $\phi_m(2\cos\theta) = \frac{\sin m\theta}{\sin\theta}$. Then Γ is an $I_2(m)$ -cell $\Leftrightarrow \phi_m(M) = 0$

 $\Leftrightarrow M$ is diagonalizable with eigenvalues $\subset \{2\cos(\pi j/m): 1 \leqslant j < m\}$. Now assume Γ is admissible $(M = M^t, \mathbb{Z}^{\geqslant 0}\text{-entries})$.

If Γ is an $I_2(m)$ -cell, then 2-M is positive definite.

Hence, 2 - M is a (symmetric) Cartan matrix of finite type.

Conversely, let A be any Cartan matrix of finite type (symmetric or not).

Then the eigenvalues of A are $2 - 2\cos(\pi e_j/h)$, where e_1, e_2, \ldots are the exponents and h is the Coxeter number. \square

5. Combinatorial Characterization

For simplicity, we assume W is braid-finite: $s_i s_j$ has finite order for all i, j.

THEOREM 2. If (W, S) is braid-finite, then an admissible S-labeled graph is a W-graph if and only if it satisfies

- the Compatibility Rule,
- the Simplicity Rule,
- the Bonding Rule, and
- the Polygon Rule.

The Compatibility Rule (applies to all W-graphs for all W):

If $m(u \to v) \neq 0$, then

every $i \in \tau(u) - \tau(v)$ is bonded to every $j \in \tau(v) - \tau(u)$.

Necessity follows from analyzing commuting braid relations.

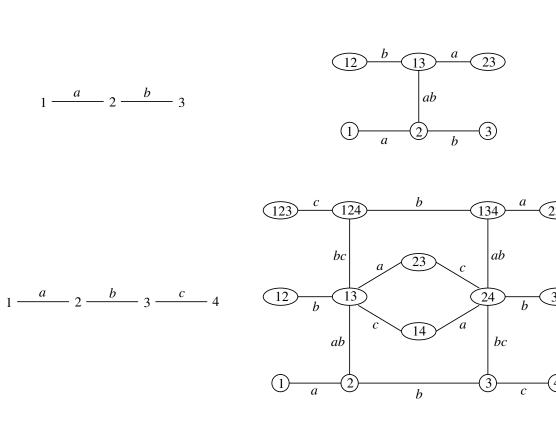
Reformulation: Define the **compatibility graph** Comp(W, S):

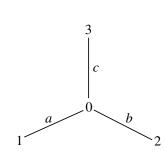
- vertex set $2^S = 2^{[n]}$,
- \bullet edges $I \to J$ when

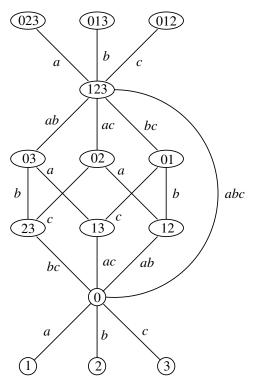
 $I \not\subseteq J$ and every $i \in I - J$ is bonded to every $j \in J - I$.

Compatibility means that $\tau:\Gamma\to \operatorname{Comp}(W,S)$ is a graph morphism.

Compatibility graphs for A_3 , A_4 , and D_4 :







THE SIMPLICITY RULE (applies only in the braid-finite case):

All edges are either simple or are inclusion arcs.

That is, $m(u \to v) \neq 0$ implies $m(u \to v) = m(v \to u) = 1$ or $\tau(u) \supset \tau(v)$. Necessity follows from Theorem 1.

THE BONDING RULE:

If $s_i s_j$ has order $p_{ij} \geqslant 3$, then the cells of $\Gamma|_{\{i,j\}}$ must be

- singletons with $\tau = \emptyset$ or $\tau = \{i, j\}$, and
- A-D-E Dynkin diagrams with Coxeter number dividing p_{ij} .

Necessity again follows from Theorem 1.

EXAMPLE. If $p_{ij} = 3$, then the nontrivial cells in $\Gamma|_{\{i,j\}}$ are $\{i\} - \{j\}$.

Equivalently (for bonds with $p_{ij} = 3$): if $i \in \tau(u)$, $j \notin \tau(u)$ then there is a unique vertex v adjacent to u such that $i \notin \tau(v)$, $j \in \tau(v)$.

Remark. The Compatibility, Simplicity, and Bonding Rules suffice to determine all admissible A_3 -cells.

THE POLYGON RULE:

[Compare with G. Lusztig, Represent. Theory 1 (1997), Prop. A.4.]

Define

$$V^{ij} := \{ v \in V : i \in \tau(v), \ j \in \tau(v) \},$$

$$V^{i}_{j} := \{ v \in V : i \in \tau(v), \ j \notin \tau(v) \},$$

$$V_{ij} := \{ v \in V : i \notin \tau(v), \ j \notin \tau(v) \}.$$

A path $u \to v_1 \to \cdots \to v_{r-1} \to v$ is alternating of type (i,j) if

$$u \in V^{ij}, \ v_1 \in V_i^i, \ v_2 \in V_i^j, \ v_3 \in V_i^i, \ v_4 \in V_i^j, \ \dots, \ v \in V_{ij}.$$

Set $N_{ij}^r(u,v) := \sum m(u \to v_1) m(v_1 \to v_2) \cdots m(v_{r-1} \to v)$ (sum over all r-step alternating paths of type (i,j)).

Then:

$$N_{ij}^r(u,v) = N_{ji}^r(u,v)$$
 for $2 \leqslant r \leqslant p_{ij}$.

Example. 3-step alternating paths

