# Combinatorial aspects of the box-ball systems

Reiho Sakamoto University of Tokyo

#### Contents

- Kirillov—Reshetikhin crystals
- Box-Ball Systems (BBS)
- Rigged configuration bijection φ
- $\phi$  = Inverse scattering transform for BBS
- Crystal interpretation of φ
- Ultradiscrete tau functions
- Relation with Kostka—Macdonald polynomials

# Kirillov—Reshetikhin crystals (Type A)

- KR crystals  $B^{r,s}$
- As the set,

```
B^{r,s}=\{	ext{all rectangular column strict} semistandard tableaux, height <math>r, width s\}
Type A_n^{(1)} case, letters run over \{1,2,\cdots,n+1\}.
```

- Algebraic structure is given by the Kashiwara operarors.
- There is nicely defined tensor product  $B^{r,s} \otimes B^{r',s'}$ .

#### **Combinatorial R**

• There is the unique crystal isomorphism called the combinatorial R;

$$R: B^{r,s} \otimes B^{r',s'} \simeq B^{r',s'} \otimes B^{r,s}$$

• There is concrete algorithm due to Mark Shimozono (2002) in terms of row insertions/deletions.

#### Affine crystals & energy function

• Affinization of crystals: as the set, it is

$$\mathsf{Aff}(B) = \{b[d] \mid b \in B, d \in \mathbb{Z}\}\$$

Affine combinatorial R.

$$b[d] \otimes b'[d'] \simeq \tilde{b}'[d' - H(b \otimes b')] \otimes \tilde{b}[d + H(b \otimes b')]$$

- H is called energy function.
- Normalization: H = 0 on tensor products of the highest weight crystals.

#### Box-Ball Systems (1)

Vertex diagrams of the combinatorial R.

$$a\otimes b\simeq b'\otimes a'\longrightarrow a\xrightarrow{b'}a'.$$
• Highest element  $u_{l,0}^{(a)}=u_{l}^{(a)}\in B^{a,l}$ 

$$u_4^{(3)} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \end{vmatrix}$$

#### Box-Ball Systems (2)

• Definition of time evolution operator  $T_l^{(a)}$ 

$$T_l^{(a)}(b) := b'$$

where,

$$b = b_1 \otimes \cdots \otimes b_L, \quad b' = b'_1 \otimes \cdots \otimes b'_L$$

#### Example of BBS

• Evolution under  $T_{\infty}^{(1)}$ . Shape of paths  $(B^{1,1})^{\otimes 28}$ 

- t=0: 1222211133243111111111111111
- t=1: 1111122221132433111111111111
- t=2: 111111111122213224331111111111
- t=3: 11111111111112211322433211111
- t=4: 11111111111111122111322143321

#### Rigged configuration bijection (1)

- There is one-to-one correspondence between
  - (1) tensor products of the KR crystals
  - (2) combinatorial objects called rigged configurations





















#### Rigged configuration bijection (2)

- The bijection φ was originally introduced in order to prove the fermionic formula for the Kostka—Foulkas polynomials.
- Starting points:
   Kerov—Kirillov—Reshetikhin (1986)
   Kirillov—Reshetikhin (1986)
- Established by: Kirillov—Schilling—Shimozono (2002)

#### Inverse scattering formalism

- New application of φ
- The bijection φ gives inverse scattering transform for the box-ball systems.
   (Kuniba—Okado—S—Takagi—Yamada 2006).
- Time evolutions of the paths b are linearlized on the corresponding rigged configuration  $\phi(b)$ .

# Crystal interpretation of φ (1)

- Original definition of the algorithm for  $\varphi$  is given by elaborate combinatorial procedures.
- We want to clarify representation theoretic origin of φ.
- For the cases  $B^{1,s_1} \otimes \cdots \otimes B^{1,s_L}$ , there is an interpretation of  $\Phi^{-1}$  (S 2006).
- We want to improve this theory, because
  (1) It is not easy to generalize to

$$B^{r_1,s_1}\otimes\cdots\otimes B^{r_L,s_L}$$

(2) It does not clarify the meanings of combinatorial procedures in the definition of  $\phi$ .

# Crystal interpretation of φ (2)

• Start from the definition of BBS:



• Label each columns of  $b_j \in B^{\alpha_j,\beta_j}$  as:

$$b_j = c_{\beta_j} \cdots c_2 c_1$$

Define sub-tableaux by:

$$b_{j,k} = c_k \cdots c_2 c_1$$

# Crystal interpretation of φ (3)

Define the local energy by

$$E_{l,j,k}^{(a)} = H\left(u_{l,j-1}^{(a)} \otimes b_{j,k}\right)$$

for 
$$(l \in \mathbb{Z}_{>0}, 1 \le j \le L, 1 \le k \le \beta_j)$$
.



# Crystal interpretation of φ (4)

- Energy spectrum for type  $A_n^{(1)}$ .
- Collection of tables labeled by  $1 \le a \le n$ , whose i-th row, (j,k)-th column is given by

$$\varepsilon_{l,j,k}^{(a)} := \left( E_{l,j,k}^{(a)} - E_{l,j,k-1}^{(a)} \right) - \left( E_{l-1,j,k}^{(a)} - E_{l-1,j,k-1}^{(a)} \right).$$

• Note: column (j,k) obey lexicographic ordering.

a = 1:

a = 2:

a = 3:

a = 4:

# Crystal interpretation of φ (5)

- Meanings of the energy spectrum.
- Original definition of φ: box-adding procedure.

Integers in the energy spectrum represent the boxadding procedure:

 $\varepsilon_{l,j,k}^{(a)}$  = number of added box at specific position.

• We can construct the rigged configuration  $\phi(b)$  from the energy spectrum.

a = 1:

a = 2:

a = 3:

a = 4:





# Crystal interpretation of φ (6)

- CONCLUSION
- The original algorithm for φ is equivalent to the computation of the energy spectrum:

$$\varepsilon_{l,j,k}^{(a)} := \left( E_{l,j,k}^{(a)} - E_{l,j,k-1}^{(a)} \right) - \left( E_{l-1,j,k}^{(a)} - E_{l-1,j,k-1}^{(a)} \right).$$

• Crystal interpretation of the map  $\phi$  (S 2007).

# Is there other link between BBS and combinatorics?

- It will be interesting to search links between BBS and other mathematical structures.
- One progress in this direction is relationship between tau function of the BBS and the Kostka—Macdonald polynomials.

#### Ultradiscrete tau function (1)

From now, we exclusively consider the case

$$B^{1,1} \otimes B^{1,1} \otimes \cdots \otimes B^{1,1}$$

- Path  $p = a_1 \otimes a_2 \otimes \cdots \otimes a_L$
- Energy statistics on p  $\text{maj}(p) = \sum_{i=1}^{L-1} (L-i)\chi(a_i < a_{i+1})$
- where  $\chi(\text{True})=1$  and  $\chi(\text{False})=0$ .

   Tau function

$$\tau(p) = \mathsf{maj}(1 \otimes p)$$

#### Ultradiscrete tau function (2)

- τ(p) is special case of tau functions introduced by [Kuniba—S—Yamada 2006].
- Tau functions gives general solutions to the BBS.
- Proof based on
  - Ultradiscretization of the KP hierarchy
  - Yang—Baxter relation for affine crystals
  - Recursive & algebraic reformulation of the map φ<sup>-1</sup> [S 2006] (see also [Kuniba—Okado—S—Takagi—Yamada 2006])

#### Ultradiscrete tau function (3)

- There are 3 expressions for  $\tau(p)$ .
  - Explicit formula in terms of the charge function of the fermionic formula for the Kostka—Foulkas polynomials.
  - Energy function of affine crystals (in the former slide).
  - Counting balls in dynamics of the BBS.

#### Tau functions with partitions

• According to composition  $\mu = (\mu_1, \mu_2, \dots, \mu_n)$  divide a path

$$p = a_{[1]} \otimes a_{[2]} \otimes \cdots \otimes a_{[n]}$$

$$a_{[i]} = a_{\mu_{[i-1]}+1} \otimes a_{\mu_{[i-1]}+2} \otimes \cdots \otimes a_{\mu_{[i]}} \in (B^{1,1})^{\otimes \mu_i}$$

where 
$$\mu_{[i]} = \sum_{j=1}^{i} \mu_{j}$$
.

• Define  $\tau_{\mu}(p) = \sum_{i=1}^{n} \tau(a_{[i]})$ 

- Path  $p = a \otimes b$  where a = 4312111, b = 4321111 ( $\mu = (7,7)$ )
- Time evolution of BBS for a and b:

• Therefore  $\tau_{(7,7)}(p) = 11 + 7 = 18$ .

# Generating functions of tau functions

• Theorem [A. N. Kirillov—S 2008] Let  $\alpha$  be a composition and  $\mu$  be a partition of the same size. Then,

$$\sum_{p \in \mathcal{P}(\alpha)} q^{\tau_{\mu}(p) - \tau_{(1^{|\mu|})}(p)} = \sum_{\eta \vdash |\mu|} K_{\eta,\alpha} \tilde{K}_{\eta,\mu}(q,1).$$

 $\mathcal{P}(\alpha)$ : set of all paths with weight  $\alpha$ .

- We can prove this by elementary argument.
- However relationship between our tau statistics and Haglund's statistics is not clear.

## Example of $T_{\infty}^{(1)}$ (1)

- t=0: 1222211133243111111111111111
- t=1: 1111122221132433111111111111
- t=2: 11111111112221322433111111111
- t=3: 11111111111112211322433211111
- t=4: 11111111111111122111322143321

# Example of $T_{\infty}^{(1)}$ (2)

 Corresponding rigged configuration with respect to each time t:



 Now we are going to look at the energy spectrum with respect to each t:

### Energy spectrum (t=0)

| 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 3 | 3 | 2 | 4 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   | c |   |   |   |   |   |   | b |   |   | a |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   | c |   |   |   |   |   |   | b |   |   | a |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   | c |   |   |   |   |   |   | b |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   | c |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   | e |   |   | d |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   | e |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   | e |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   | f |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

### Energy spectrum (t=1)

### Energy spectrum (t=2)

### Energy spectrum (t=3)

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 3 | 2 | 2 | 4 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |   |   |   |   | a |   |   |   | b |   |   | c |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   | a |   |   |   | b |   |   | c |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | b |   |   | c |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | c |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | d |   |   | e |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | e |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | e |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | f |   |   |   |   |   |   |   |   |

### Energy spectrum (t=4)

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2              | 2 | 1 | 1 | 1 | 3 | 2 | 2 | 1 | 4 | 3 | 3 | 2 | 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----------------|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |   |   |   |   |   |   | $\overline{a}$ |   |   |   |   | b |   |   |   | c |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |                | a |   |   |   |   | b |   |   |   | c |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   | b |   |   |   | c |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |   |   |   |   |   | c |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |                |   |   |   |   | d |   |   |   | e |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |   |   |   | e |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |   |   |   |   | e |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |   |   | f |   |   |   |   |

### Example of $T_{\infty}^{(2)}$ (1)

### Example of $T_{\infty}^{(2)}$ (2)

 Corresponding rigged configuration with respect to each time t:



### Energy spectrum (t=0)

### Energy spectrum (t=1)

### Energy spectrum (t=2)

### Energy spectrum (t=3)

### Energy spectrum (t=4)