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Introduction

Work in progress

I Question by G. Navarro about characters in symmetric groups,
related to a paper by him and I.M. Isaacs. (March 2008)

I Answer to question was surprisingly elegant and inspired the general
definition of sign elements and sign classes in finite groups.

I Content of talk:
• Generalities about group characters
• The Isaacs-Navarro question
• Sign elements/classes in finite groups and their relation to the
question
• Generalities about characters of symmetric groups
• Special types of sign classes in symmetric groups
• Answering the Isaacs-Navarro question
• A general result about sign classes in symmetric groups
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Properties of irreducible characters of finite groups

Background

G finite group. G has a set Irr(G ) of irreducible characters. We list some
fundamental properties of the irreducible characters.

I Any χ ∈ Irr(G ) is a class function, i.e. constant on the conjugacy
classes of G .

I |Irr(G )| = k(G ), the number of conjugacy classes of G .

I Character values are algebraic integers.

I The character table of G is a square k(G )-matrix. Rows indexed by
irreducible characters and columns by conjugacy classes. Entry (i , j)
is the value χi (gj) of character χi on an element gj in conjugacy
class Kj . The first column contains the degrees of the irreducible
characters χi (1).

I The ring of generalized characters:

R(G ) = {
k(G)∑
i=1

ziχi | zi ∈ Z}.
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Orthogonality relations for characters

I Row orthogonality (First orthogonality relation):

k(G)∑
i=1

χr (gi )χs(gi )

|CG (gi )|
= δrs .

I Column orthogonality (Second orthogonality relation):

k(G)∑
i=1

χi (gr )χi (gs) = δrs |CG (gr )|.
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Question of Isaacs and Navarro

I Background for the question may be found in their preprint entitled
“Character Sums and Double Cosets” from 2008.
It is known the the 2-Sylow subgroups of symmetric groups are
self-normalizing.

I Question: Let P be 2-Sylow subgroup of Sn and Irr2′(Sn) be the set
of odd degree irreducible characters of Sn. Does there exist signs eχ

for χ ∈ Irr2′(Sn) such that the generalized character

Θ =
∑

χ∈Irr2′ (Sn)

eχχ

satisfies:

(i) Θ(x) is divisible by |P/P ′| for all x ∈ Sn.

and
(ii) Θ(x) = 0 for all x ∈ Sn of odd order.
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Sign classes

I A sign class in a finite group G is a conjugacy class on which all
irreducible characters of G take one of the values 0, 1 or -1.

I Elements in sign classes are called sign elements.

I Example: Let G = S3. Character table 1 1 1
2 0 −1
1 −1 1


The classes 2 and 3 are sign classes.
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Examples of sign elements

I In abelian groups only elements satisfying g2 = 1 are sign elements.

I Non-central involutions in dihedral groups are sign elements

I In SL(2, 2n) there is an involution on which all irreducible characters
except the Steinberg character take the values 1 or -1. Thus this is a
sign element. This is a very interesting example.

I Sign elements of odd prime order p may occur when you have a
self-centralizing p-Sylow subgroup of order p in G . This occurs for
example for p = 7 in the simple group M11 which also has sign
elements of order 6.

I Question: Are there other examples of involutions as sign elements
in quasisimple groups than the SL(2, 2n)? (None in symmetric
groups for n ≥ 5, as we shall see.)
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Support of sign elements

I The support of a sign element s ∈ G is defined as

supp(s) = {χ ∈ Irr(G ) | χ(s) 6= 0}.

I Column orthogonality shows that for a sign element s ∈ G we have
that |supp(s)| = |CG (s)|.
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A generalized character

I Suppose that you have a sign element s. For χ ∈ Irr(G ) put
eχ = χ(s). If eχ 6= 0 then eχ is 1 or -1.

I Consider the generalized character

Θs =
∑

χ∈Irr(G)

eχχ

I Column orthogonality shows that Θs vanishes on all conjugacy
classes except the class of s.

I On the class of s Θs takes the value |CG (s)|.
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A very small example

I Column orthogonality :
∑k(G)

i=1 χi (gu)χi (gv ) = δuv |CG (gu)|.
I Let G = S3. 

(13) (2, 1) (3)

1 1 1
2 0 −1
1 −1 1


The second and third conjugacy class are sign classes.

I Choose v = 2. Get that Θ(2,1) = χ1 − χ3. Thus

χ1(gu)− χ3(gu) = 0 for u 6= v

χ1(gu)− χ3(gu) = 2 for u = v = 2.

I Choose v = 3. Get that Θ(3) = χ1 − χ2 + χ3. Thus

χ1(gu)− χ2(gu) + χ3(gu) = 0 for u 6= 3

χ1(gu)− χ2(gu) + χ3(gu) = 3 for u = v = 3.
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Relevance to Isaacs-Navarro question

I Suppose that you can find a 2-element s in Sn which is a sign
element with support Irr2′(Sn). Consider Θ = Θs .

I Condition (ii) stating that Θ(x) = 0 for all x ∈ Sn of odd order is
trivially fulfilled, since s is a 2-element

I Condition (i) stating that Θ(x) is divisible by |P/P ′| for all x ∈ Sn

requires only a simple calculation in the case x = s.
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Remark on block orthogonality

I When s ∈ G is a sign element, the generalized character

Θs =
∑

χ∈Irr(G)

eχχ

is the difference between two disjoint multiplicity-free characters Θ+
s

and Θ−
s which coincide on all conjugacy classes except the class of s.

I Here
Θ+

s =
∑

χ∈Irr(G),eχ=1

χ, Θ−
s =

∑
χ∈Irr(G),eχ=−1

χ

I Block orthogonality shows that if p is a prime number dividing the
order of the sign element s and if you split Θ+

s and Θ−
s into

components according to the p-blocks of characters of G , then the
values of these components for a given p-block still coincide on all
p-regular elements in G . This has consequences for the
decomposition numbers.
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Characters and partitions

I We will discuss from now on sign classes in the symmetric groups Sn.

I The irreducible characters and the conjugacy classes of Sn are
labelled canonically by the partitions of n.

I A partition λ of n is a sequence of natural numbers

λ = (a1, a2, . . . , am)

such that

a1 ≥ a2 ≥ . . . ≥ am and a1 + a2 + . . . + am = n
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Characters of symmetric groups

I The irreducible characters of Sn are all integer valued.

I Let P(n) be the set of partitions of n.

I We write the entries of the character table of Sn as [λ](µ), for
λ, µ ∈ P(n). This is the value of the irreducible character of Sn,
labelled by λ on the conjugacy class labelled by µ.
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Young diagrams

The Young diagram of the partition λ = (a1, a2, . . . , am) of n is obtained
by arranging n boxes/nodes as the following example shows:
λ = (52, 4, 3, 1) :

or

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦
◦

Jørn B. Olsson Sign elements in symmetric groups



Hooks

I A hook in (the Young diagram of) λ is a subdiagram as marked by
bullets below.

◦ ◦ ◦ ◦ ◦
◦ • • • •
◦ • ◦ ◦
◦ • ◦
◦

I This is the (2,2)-hook H2,2(λ). Its corner node is in position (2,2).
The length h2,2(λ) of the hook is the number of bullets, i.e. 6. The
leg length b2,2(λ) of the hook is the number of bullets below the
corner node i.e. 2.
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Hook diagram

Each node is the “corner” of a hook and has an associated hook length.

◦ ◦ ◦ ◦ ◦
◦ 6 ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦
◦

Here is the complete hook diagram of our example:

9 7 6 4 2
8 6 5 3 1
6 4 3 1
4 2 1
1
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Hook removal

You remove the hook Hi,j(λ) from λ by deleting the nodes of the hook
and pushing the diagram together. The result is denoted λ\Hi,j(λ).

Example:
λ = (52, 4, 3, 1), (i , j) = (2, 2).

◦ ◦ ◦ ◦ ◦
◦ − − − −
◦ − ∗ ∗
◦ − ∗
◦

λ\H2,2(λ) :

◦ ◦ ◦ ◦ ◦
◦ ∗ ∗
◦ ∗
◦
◦

The −’s are removed and the ∗’s are moved.
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The Murnaghan-Nakayama formula

If λ = (a1, a2, ..., am) and h ∈ N define

Y(λ) = {(i , j) | 1 ≤ i ≤ m, 1 ≤ j ≤ ai}

and

Y(λ)h = {(i , j) ∈ Y(λ) | hi,j(λ) = h}.

Theorem:(Murnaghan-Nakayama formula) Let λ, µ ` n with
µ = (l1, l2, . . . , lk).
For all r , 1 ≤ r ≤ k we have

[λ](µ) =
∑

(i ,j)∈Y(λ)lr

(−1)bλ
i,j [λ\Hi ,j(λ)](µr ),

where µr = (l1, l2, . . . , lr−1, lr+1, . . . , lk).
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Consequence of Murnaghan-Nakayama formula

In his book “The Representation Theory of the Symmetric Groups”,
Springer Lecture Notes, 1978, G. James lists a useful consequence of the
MN-formula.

Theorem: Let ν be a partition of n − h. The generalized character

X (ν, n) =
∑

λ

(−1)bλ[λ]

vanishes on all µ ` n which do not contain a part equal to h. Here λ runs
through all partitions of n for which ν = λ\Hi,j(λ) for some
(i , j) ∈ Y(λ)h and then bλ = bi,j(λ).

Example: Suppose that ν = (2), h = 3, n = 5. Then

X (ν, 5) = [5]− [22, 1] + [2, 13].
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Sign partitions

I We call µ ∈ P(n) a sign partition if the the corresponding conjugacy
class is a sign class, ie. if [λ](µ) ∈ {0, 1,−1} for all λ ∈ P(n). The
support of a sign partition µ is defined as

supp(µ) = {λ ∈ P(n) | [λ](µ) 6= 0}

I (n) is always a sign partition

I By the MN-formula [λ](n) 6= 0 if and only if λ = (n − k, 1k) is a
hook partition and then [λ](n) = (−1)k .
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Sign partitions for small values of n

I n = 2 : (2), (12)
n = 3 : (3), (2, 1)
n = 4 : (4), (3, 1), (2, 12)

I n = 5 : (5), (4, 1), (3, 2), (3, 12)
n = 6 : (6), (5, 1), (4, 2), (4, 12), (3, 2, 1)
n = 7 : (7), (6, 1), (5, 2), (5, 12), (4, 3), (4, 2, 1), (3, 2, 12)

I n = 8 : (8), (7, 1), (6, 2), (6, 12), (5, 3), (5, 2, 1), (4, 3, 1)

I n = 9 :
(9), (8, 1), (7, 2), (7, 12), (6, 3), (6, 2, 1), (5, 4), (5, 3, 1), (5, 2, 12)

I n = 10 : (10), (9, 1), (8, 2), (8, 12), (7, 3), (7, 2, 1), (6, 4), (6, 3, 1),
(6, 2, 12), (5, 4, 1), (4, 3, 2, 1)
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Unique path partitions

I Consider the unique path-partitions (for short up-partitions). They
are defined as follows.

I If µ = (l1, l2, ..., lk) and λ are partitions of n, then a µ-path in λ is a
sequence λ = λ0, λ1, ..., λk = (0), where for i = 1...k λi is obtained
by removing an li -hook in λi−1. Then we call µ is an up-partition if
for all λ the number of µ-paths in λ is at most 1.

I A up-partition is also a sign partition.

I If µ = (l1, l2, ..., lk) is an up-partition with k ≥ 2, then also
µ′ = (l2, ..., lk) is an up-partition.

I (3, 2, 1) is s sign partition, but not a up-partition, since there are two
(3,2,1)-paths in λ = (3, 2, 1).
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Extending partitions

I Proposition: Let m > n. If µ′ = (a1, a2, ..., ak) is a partition of n,
and µ = (m, a1, a2, ..., ak) then µ′ is a sign partition (respectively a
up-partition) of n if and only if µ is a sign partition (respectively a
up-partition) of m + n.

I The key fact used in the proof is: Let λ be a partition of m + n.
Since 2m > m + n λ cannot contain more than at most one hook of
length m. Thus the up-statement is obvious.
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sd -partitions

I We call a partition µ = (a1, a2, ..., ak) strongly decreasing (for short
sd-partition) if for i = 1, ..., k − 1 we have ai > ai+1 + ... + ak .

I If µ = (a1, a2, ..., ak) is an sd-partition with k ≥ 2 then
µ′ = (a2, ..., ak) is also an sd-partition.

I (3, 12) is an up-partition, but not an sd-partition

I Proposition: An sd-partition is a up-partition and thus also sign
partition.
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sd -partitions and non-squashing partitions I

I Hirschhorn and Sellers defined a partition µ = (a1, a2, ..., ak) to be
non-squashing if for i = 1, ..., k − 1 we have ai ≥ ai+1 + ... + ak .
For sd-partitions the condition is ai > ai+1 + ... + ak .

I It was shown by Hirschhorn and Sellers that the number of
non-squashing partitions of n equals the number of binary partitions
of n, ie. partitions whose parts are powers of 2. A bijection was
given by Sloane and Sellers.
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sd -partitions and non-squashing partitions II

Let s(n) denote the number of sd-partitions of n. Put s(0) = 1. Ordering
the set of sd-partitions according to their largest part shows that

s(n) =

b(n−1)/2c∑
i=0

s(i).

Thus for all k ≥ 1 we have s(2k − 1) = s(2k). Putting
t(k) = 2s(2k) = s(2k − 1) + s(2k) it can be shown using recursion
formulae, that t(k) equals the number of non-squashing partitions of 2k,
ie. the number of “binary” partitions of 2k.
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Answering the Isaacs-Navarro question

I Theorem: Write n = 2r1 + 2r2 + ... + 2rt , where
r1 > r2 > ... > rt ≥ 0. Then µ = (2r1 , 2r2 , ..., 2rt ) is a sd-partition
with support supp(µ) = Irr2′(Sn). Moreover Θµ satisfies the
conditions (i) and (ii) above. Indeed Θµ vanishes everywhere except
on µ where it takes the value |P/P ′|.

I Facts needed in proof
• |P/P ′| = zµ = 2r1+r2+...+rt .
• |Irr2′(Sn)| = 2r1+r2+...+rt (Macdonald, 1971, Bull. London Math.
Soc)
• supp(µ) ⊆ Irr2′(Sn). (Malle-Navarro-Olsson, 2000, J. Group
Theory)

I The last two facts are special cases of more general results utilizes
the theory of cores and quotients of partitions.
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Another example of existence of signs

In SL(2, 2n) the 2-Sylow subgroup is self centralizing. It has a unique
conjugacy class of involutions and 2n + 1 irreducible characters, all of
which (with the exception of the Steinberg character) have odd degrees.
The involutions are sign elements, so that Θt , t involution, vanishes on
all elements of odd order. The value on t is 2n. Thus this is another
example of the existence of signs for odd degree irreducible characters
such that the signed sum satisfy the conditions mentioned above.
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Towards a classification of sign partitions

I Lemma: A sign partition cannot have its smallest part repeated
except for the part 1, which may be repeated once.

Proof: Suppose that 1 is repeated m ≥ 2 times then by MN
[n − 1, 1](µ) = [m − 1, 1](1m) = m − 1. Thus m = 2. If b > 1 is the
smallest part, repeated m ≥ 2 times then by MN
[n − b, b](µ) = m.

I We have that much more is true:

Theorem: A sign partition cannot have repeated parts except for
the part 1, which may be repeated once.
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Corollaries

I Corollary: If µ is a sign partition, then the centralizer of elements of
cycle type µ is abelian. Short: Centralizers of sign elements in Sn

are abelian.

I There exists a group of order 32 containing a sign element with a
non-abelian centralizer. (G. Navarro)

I Which 2-elements in Sn are sign classes?
Corollary: Suppose that n = 2r1 + 2r2 + ... + 2rt , where
r1 > r2 > ... > rt ≥ 0. The sign classes of 2-elements in Sn have for
n odd (ie. rt = 0) cycle type (2r1 , 2r2 , ..., 2rt ). If n = 4k + 2 (ie.
rt = 1) we have in addition (2r1 , 2r2 , ..., 2rt−1 , 12). If n = 8k + 4 (ie.
rt = 2) we have in addition (2r1 , 2r2 , ..., 2rt−1 , 2, 12).
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Remarks about the proof I

I Assume that the sign partition µ of n has a smallest repeated part
a > 1 repeated m > 1 times. We want to show that we can find a
not-too-complicated partition λ such that |[λ](µ)| ≥ m.

I In fact we show that λ can be chosen such that all hook lengths of λ
outside the first row are ≤ a.

I It is not difficult to see that we may assume that a is the largest part
of µ.

I Thus µ = (am, a2, ..., ak) where a > a2 > ... > ak > 0. Put
t = a2 + ... + ak , so that m = ma + t. We have by the lemma t > 0.
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Remarks about the proof II

I Let for 0 ≤ i ≤ m µi be µ with i parts equal to a removed. Thus
µ0 = µ and µm = µ∗ = (a2, ..., ak).

I The partition (n − a, 1a) has precisely two hooks of length a (since
multiplicity of a is ≥ 2. The MN-formula shows [n − a, 1a](µ) =
(−1)a−1[n − a](µ1) + [n − 2a, 1a](µ1) = (−1)a−1 + [n − 2a, 1a](µ1).
Inductively we get [n − a, 1a](µ) = (m − 1)(−1)a−1 + [t, 1a](µm−1).
Need to understand the last term [t, 1a](µm−1).

I If t ≤ a, then [t, 1a] has only one hook of length a and we get by
MN that [t, 1a](µm−1) = (−1)a−1[t](µm) = (−1)a−1 and thus
[n − a, 1a](µ) = m(−1)a−1. Thus [n − a, 1a] may be chosen as the
desired λ.
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Remarks about the proof III

I We are left with the case a < t. This is divided into the subcases
t < 2a and t ≥ 2a, which demand similar arguments. We consider
only the first subcase.

I If t < 2a then t − a < a. There are exactly a partitions of t obtained
by adding an a-hook to the partition (t − a). Suppose that κi is
obtained by adding a hook with leg length i to (t − a).

I Since t < 2a each κi has only one hook of length a. Removing it we
get (t − a). Note that κ0 = (t).

I By the theorem, which was a consequence of MN, the generalized
character

∑a−1
i=0 (−1)iκi takes the value 0 on µ∗, since µ∗ has no

part divisible by a.
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Remarks about the proof IV

I Choose an j > 0 such that (−1)j [κj ](µ
∗) ≥ 0. (Clearly, the

(−1)j [κj ](µ
∗) cannot all be < 0, since the contribution from

[κ0] = [t] is equal to 1 and a ≥ 4.)

I Put λ∗ = κj so that
(−1)j [λ∗](µ∗) ≥ 0.

I If λ is obtained from λ∗ by adding ma to its largest part, then the
largest part of λ is at least n − a so that trivially all hook lengths
outside the first row are ≤ a. We can then show that |[λ](µ)| ≥ m.

I This is done by a calculation analogous to above. We get

[λ](µ) = [λ∗](µ∗) + m(−1)j = (−1)j((−1)j [λ∗](µ∗) + m).

This has absolute value ≥ m, so that µ is not a sign class.
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What is next?

It would seem that eventually sign partitions have to behave much like
sd-partitions. In most cases the following seems to hold:

If µ′ = (a2, ..., ak) is a sign partition of t, a > a2 and µ = (a, a2, ..., ak)
then µ is a sign partition if and only if a > t.

Example: (4,3,2,1) is a (non-sd) sign partition of 10, but (a,4,3,2,1) is
not a sign partition for a = 5, ..., 10.

However the partitions (1, 1) and (a, a− 1, 1), a ≥ 2 provide (the only)
counterexamples to the above statement in the case a = t. There may be
only finitely many counterexamples in the case where a < t.

An open question is the following:

Is it true that if µ = (a1, a2, ..., ak) is a sign partition, then also
µ′ = (a2, ..., ak) is an sign partition?
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