Sign elements in symmetric groups

Jørn B. Olsson

Dept. of Mathematical Sciences University of Copenhagen, Denmark

Nagoya, September 4, 2008

Work in progress

- Question by G. Navarro about characters in symmetric groups, related to a paper by him and I.M. Isaacs. (March 2008)
- Answer to question was surprisingly elegant and inspired the general definition of sign elements and sign classes in finite groups.
- Content of talk:
 - Generalities about group characters
 - The Isaacs-Navarro question
 - \bullet Sign elements/classes in finite groups and their relation to the question
 - Generalities about characters of symmetric groups
 - Special types of sign classes in symmetric groups
 - Answering the Isaacs-Navarro question
 - A general result about sign classes in symmetric groups

Properties of irreducible characters of finite groups

Background

G finite group. G has a set Irr(G) of irreducible characters. We list some fundamental properties of the irreducible characters.

- Any *χ* ∈ Irr(*G*) is a class function, i.e. constant on the conjugacy classes of *G*.
- |Irr(G)| = k(G), the number of conjugacy classes of G.
- Character values are algebraic integers.
- ▶ The character table of G is a square k(G)-matrix. Rows indexed by irreducible characters and columns by conjugacy classes. Entry (i, j) is the value $\chi_i(g_j)$ of character χ_i on an element g_j in conjugacy class K_j . The first column contains the degrees of the irreducible characters $\chi_i(1)$.
- The ring of generalized characters:

$$\mathcal{R}(\mathcal{G}) = \{\sum_{i=1}^{k(\mathcal{G})} z_i \chi_i \mid z_i \in \mathbb{Z}\}.$$

Row orthogonality (First orthogonality relation):

$$\sum_{i=1}^{k(G)} \frac{\chi_r(g_i)\overline{\chi_s(g_i)}}{|C_G(g_i)|} = \delta_{rs}.$$

Column orthogonality (Second orthogonality relation):

$$\sum_{i=1}^{k(G)} \chi_i(g_r) \overline{\chi_i(g_s)} = \delta_{rs} |C_G(g_r)|.$$

Question of Isaacs and Navarro

- Background for the question may be found in their preprint entitled "Character Sums and Double Cosets" from 2008.
 It is known the the 2-Sylow subgroups of symmetric groups are self-normalizing.
- Question: Let P be 2-Sylow subgroup of S_n and Irr_{2'}(S_n) be the set of odd degree irreducible characters of S_n. Does there exist signs e_χ for χ ∈ Irr_{2'}(S_n) such that the generalized character

$$\Theta = \sum_{\chi \in \mathit{Irr}_{2'}(\mathcal{S}_n)} e_{\chi} \chi$$

satisfies:

(i)
$$\Theta(x)$$
 is divisible by $|P/P'|$ for all $x \in S_n$.

and

(ii)
$$\Theta(x) = 0$$
 for all $x \in S_n$ of odd order.

- ► A sign class in a finite group G is a conjugacy class on which all irreducible characters of G take one of the values 0, 1 or -1.
- Elements in sign classes are called sign elements.
- **Example:** Let $G = S_3$. Character table

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$

The classes 2 and 3 are sign classes.

- ▶ In abelian groups only elements satisfying $g^2 = 1$ are sign elements.
- Non-central involutions in dihedral groups are sign elements
- ▶ In SL(2, 2ⁿ) there is an involution on which all irreducible characters except the Steinberg character take the values 1 or -1. Thus this is a sign element. This is a very interesting example.
- ► Sign elements of odd prime order *p* may occur when you have a self-centralizing *p*-Sylow subgroup of order *p* in *G*. This occurs for example for *p* = 7 in the simple group M₁₁ which also has sign elements of order 6.
- ► Question: Are there other examples of involutions as sign elements in quasisimple groups than the SL(2, 2ⁿ)? (None in symmetric groups for n ≥ 5, as we shall see.)

• The support of a sign element $s \in G$ is defined as

$$\operatorname{supp}(s) = \{\chi \in \operatorname{Irr}(G) \mid \chi(s) \neq 0\}.$$

Column orthogonality shows that for a sign element s ∈ G we have that |supp(s)| = |C_G(s)|.

- ▶ Suppose that you have a sign element *s*. For $\chi \in Irr(G)$ put $e_{\chi} = \chi(s)$. If $e_{\chi} \neq 0$ then e_{χ} is 1 or -1.
- Consider the generalized character

$$\Theta_{s} = \sum_{\chi \in \operatorname{Irr}(G)} e_{\chi} \chi$$

- ► Column orthogonality shows that Θ_s vanishes on all conjugacy classes except the class of *s*.
- On the class of $s \Theta_s$ takes the value $|C_G(s)|$.

A very small example

► Column orthogonality : $\sum_{i=1}^{k(G)} \chi_i(g_u) \overline{\chi_i(g_v)} = \delta_{uv} |C_G(g_u)|$. ► Let $G = S_3$.

$[-(1^3)]$) (2	2,1)	(3)
	1	1	1
	2	0	-1
[:	1	-1	1

The second and third conjugacy class are sign classes.

• Choose v = 2. Get that $\Theta_{(2,1)} = \chi_1 - \chi_3$. Thus

$$\chi_1(g_u) - \chi_3(g_u) = 0 \text{ for } u \neq v$$

$$\chi_1(g_u) - \chi_3(g_u) = 2 \text{ for } u = v = 2.$$

• Choose $v = 3$. Get that $\Theta_{(3)} = \chi_1 - \chi_2 + \chi_3$. Thus

$$\chi_1(g_u) - \chi_2(g_u) + \chi_3(g_u) = 0 \text{ for } u \neq 3$$

$$\chi_1(g_u) - \chi_2(g_u) + \chi_3(g_u) = 3 \text{ for } u = v = 3.$$

- Suppose that you can find a 2-element s in S_n which is a sign element with support Irr_{2'}(S_n). Consider Θ = Θ_s.
- Condition (ii) stating that Θ(x) = 0 for all x ∈ S_n of odd order is trivially fulfilled, since s is a 2-element
- Condition (i) stating that Θ(x) is divisible by |P/P'| for all x ∈ S_n requires only a simple calculation in the case x = s.

▶ When $s \in G$ is a sign element, the generalized character

$$\Theta_s = \sum_{\chi \in \operatorname{Irr}(G)} e_{\chi} \chi$$

is the difference between two disjoint multiplicity-free characters Θ_s^+ and Θ_s^- which coincide on all conjugacy classes except the class of s.

Here

$$\Theta_s^+ = \sum_{\chi \in \operatorname{Irr}(G), e_{\chi} = 1} \chi, \quad \Theta_s^- = \sum_{\chi \in \operatorname{Irr}(G), e_{\chi} = -1} \chi$$

▶ Block orthogonality shows that if p is a prime number dividing the order of the sign element s and if you split Θ_s⁺ and Θ_s⁻ into components according to the p-blocks of characters of G, then the values of these components for a given p-block still coincide on all p-regular elements in G. This has consequences for the decomposition numbers.

- We will discuss from now on sign classes in the symmetric groups S_n .
- ► The irreducible characters and the conjugacy classes of S_n are labelled canonically by the partitions of n.
- A partition λ of *n* is a sequence of natural numbers

$$\lambda = (a_1, a_2, \ldots, a_m)$$

such that

$$a_1 \geq a_2 \geq \ldots \geq a_m$$
 and $a_1 + a_2 + \ldots + a_m = n$

- The irreducible characters of S_n are all integer valued.
- Let $\mathcal{P}(n)$ be the set of partitions of n.
- We write the entries of the character table of S_n as [λ](μ), for λ, μ ∈ P(n). This is the value of the irreducible character of S_n, labelled by λ on the conjugacy class labelled by μ.

The Young diagram of the partition $\lambda = (a_1, a_2, ..., a_m)$ of *n* is obtained by arranging *n* boxes/nodes as the following example shows: $\lambda = (5^2, 4, 3, 1)$:

or

0	0	0	0	0
0	0	0	0	0
0	0	0	0	
0	0	0		
0				

• A hook in (the Young diagram of) λ is a subdiagram as marked by bullets below.

▶ This is the (2,2)-hook $\mathcal{H}_{2,2}(\lambda)$. Its corner node is in position (2,2). The length $h_{2,2}(\lambda)$ of the hook is the number of bullets, i.e. 6. The leg length $b_{2,2}(\lambda)$ of the hook is the number of bullets below the corner node i.e. 2.

Each node is the "corner" of a hook and has an associated hook length.

0	0	0	0	0
0	6	0	0	0
0	0	0	0	
0	0	0		
0				

Here is the complete hook diagram of our example:

9	7	6	4	2
8 6	6	5 3	3	1
6	4 2	3	1	
4	2	1		
1				

You remove the hook $\mathcal{H}_{i,j}(\lambda)$ from λ by deleting the nodes of the hook and pushing the diagram together. The result is denoted $\lambda \setminus \mathcal{H}_{i,j}(\lambda)$.

Example: $\lambda = (5^2, 4, 3, 1), (i, j) = (2, 2).$ 0 - - - - -0 - * * 0 - * 0 $\lambda \setminus \mathcal{H}_{2,2}(\lambda)$: 0 0 0 0 0 * * 0 0 0

The -'s are removed and the *'s are moved.

If
$$\lambda = (a_1, a_2, ..., a_m)$$
 and $h \in \mathbb{N}$ define

$$\mathcal{V}(\lambda) = \{(i,j) \mid 1 \leq i \leq m, 1 \leq j \leq a_i\}$$

and

$$\mathcal{Y}(\lambda)_h = \{(i,j) \in \mathcal{Y}(\lambda) \mid h_{i,j}(\lambda) = h\}.$$

Theorem:(Murnaghan-Nakayama formula) Let $\lambda, \mu \vdash n$ with $\mu = (l_1, l_2, \dots, l_k)$. For all $r, 1 \leq r \leq k$ we have

$$[\lambda](\mu) = \sum_{(i,j)\in\mathcal{Y}(\lambda)_{l_r}} (-1)^{b_{i,j}^{\lambda}} [\lambda \setminus \mathcal{H}_{i,j}(\lambda)](\mu_r),$$

where $\mu_r = (I_1, I_2, \dots, I_{r-1}, I_{r+1}, \dots, I_k).$

In his book "The Representation Theory of the Symmetric Groups", Springer Lecture Notes, 1978, G. James lists a useful consequence of the MN-formula.

Theorem: Let ν be a partition of n - h. The generalized character

$$X(
u, n) = \sum_{\lambda} (-1)^{b_{\lambda}}[\lambda]$$

vanishes on all $\mu \vdash n$ which do not contain a part equal to h. Here λ runs through all partitions of n for which $\nu = \lambda \setminus \mathcal{H}_{i,j}(\lambda)$ for some $(i,j) \in \mathcal{Y}(\lambda)_h$ and then $b_{\lambda} = b_{i,j}(\lambda)$.

Example: Suppose that $\nu = (2), h = 3, n = 5$. Then

$$X(\nu,5) = [5] - [2^2,1] + [2,1^3].$$

We call μ ∈ P(n) a sign partition if the the corresponding conjugacy class is a sign class, ie. if [λ](μ) ∈ {0,1,−1} for all λ ∈ P(n). The support of a sign partition μ is defined as

$$\operatorname{supp}(\mu) = \{\lambda \in \mathcal{P}(n) \mid [\lambda](\mu) \neq 0\}$$

- (n) is always a sign partition
- By the MN-formula [λ](n) ≠ 0 if and only if λ = (n − k, 1^k) is a hook partition and then [λ](n) = (−1)^k.

>
$$n = 2: (2), (1^2)$$

 $n = 3: (3), (2, 1)$
 $n = 4: (4), (3, 1), (2, 1^2)$
> $n = 5: (5), (4, 1), (3, 2), (3, 1^2)$
 $n = 6: (6), (5, 1), (4, 2), (4, 1^2), (3, 2, 1)$
 $n = 7: (7), (6, 1), (5, 2), (5, 1^2), (4, 3), (4, 2, 1), (3, 2, 1^2)$
> $n = 8: (8), (7, 1), (6, 2), (6, 1^2), (5, 3), (5, 2, 1), (4, 3, 1)$
> $n = 9:$
(9), (8, 1), (7, 2), (7, 1^2), (6, 3), (6, 2, 1), (5, 4), (5, 3, 1), (5, 2, 1^2)
> $n = 10: (10), (9, 1), (8, 2), (8, 1^2), (7, 3), (7, 2, 1), (6, 4), (6, 3, 1), (6, 2, 1^2), (5, 4, 1), (4, 3, 2, 1)$

- Consider the *unique path*-partitions (for short *up*-partitions). They are defined as follows.
- If μ = (l₁, l₂, ..., l_k) and λ are partitions of n, then a μ-path in λ is a sequence λ = λ₀, λ₁, ..., λ_k = (0), where for i = 1...k λ_i is obtained by removing an l_i-hook in λ_{i-1}. Then we call μ is an up-partition if for all λ the number of μ-paths in λ is at most 1.
- ► A *up*-partition is also a sign partition.
- If $\mu = (l_1, l_2, ..., l_k)$ is an *up*-partition with $k \ge 2$, then also $\mu' = (l_2, ..., l_k)$ is an *up*-partition.
- (3,2,1) is s sign partition, but not a *up*-partition, since there are two (3,2,1)-paths in $\lambda = (3,2,1)$.

- ▶ **Proposition:** Let m > n. If $\mu' = (a_1, a_2, ..., a_k)$ is a partition of n, and $\mu = (m, a_1, a_2, ..., a_k)$ then μ' is a sign partition (respectively a up-partition) of n if and only if μ is a sign partition (respectively a up-partition) of m + n.
- The key fact used in the proof is: Let λ be a partition of m + n. Since 2m > m + n λ cannot contain more than at most one hook of length m. Thus the up-statement is obvious.

- We call a partition µ = (a₁, a₂,..., a_k) strongly decreasing (for short sd-partition) if for i = 1,..., k − 1 we have a_i > a_{i+1} + ... + a_k.
- If $\mu = (a_1, a_2, ..., a_k)$ is an *sd*-partition with $k \ge 2$ then $\mu' = (a_2, ..., a_k)$ is also an *sd*-partition.
- $(3, 1^2)$ is an *up*-partition, but not an *sd*-partition
- Proposition: An sd-partition is a up-partition and thus also sign partition.

- ▶ Hirschhorn and Sellers defined a partition µ = (a₁, a₂, ..., a_k) to be non-squashing if for i = 1, ..., k − 1 we have a_i ≥ a_{i+1} + ... + a_k.
 For sd-partitions the condition is a_i > a_{i+1} + ... + a_k.
- It was shown by Hirschhorn and Sellers that the number of non-squashing partitions of *n* equals the number of *binary* partitions of *n*, ie. partitions whose parts are powers of 2. A bijection was given by Sloane and Sellers.

Let s(n) denote the number of *sd*-partitions of *n*. Put s(0) = 1. Ordering the set of *sd*-partitions according to their largest part shows that

$$s(n) = \sum_{i=0}^{\lfloor (n-1)/2 \rfloor} s(i).$$

Thus for all $k \ge 1$ we have s(2k - 1) = s(2k). Putting t(k) = 2s(2k) = s(2k - 1) + s(2k) it can be shown using recursion formulae, that t(k) equals the number of non-squashing partitions of 2k, ie. the number of "binary" partitions of 2k.

Answering the Isaacs-Navarro question

- ▶ **Theorem:** Write $n = 2^{r_1} + 2^{r_2} + ... + 2^{r_t}$, where $r_1 > r_2 > ... > r_t \ge 0$. Then $\mu = (2^{r_1}, 2^{r_2}, ..., 2^{r_t})$ is a sd-partition with support supp $(\mu) = Irr_{2'}(S_n)$. Moreover Θ_{μ} satisfies the conditions (i) and (ii) above. Indeed Θ_{μ} vanishes everywhere except on μ where it takes the value |P/P'|.
- Facts needed in proof

•
$$|P/P'| = z_{\mu} = 2^{r_1 + r_2 + \dots + r_t}$$

- $|Irr_{2'}(S_n)| = 2^{r_1+r_2+\ldots+r_t}$ (Macdonald, 1971, Bull. London Math. Soc)
- supp $(\mu) \subseteq Irr_{2'}(S_n)$. (Malle-Navarro-Olsson, 2000, J. Group Theory)
- The last two facts are special cases of more general results utilizes the theory of cores and quotients of partitions.

In $SL(2, 2^n)$ the 2-Sylow subgroup is self centralizing. It has a unique conjugacy class of involutions and $2^n + 1$ irreducible characters, all of which (with the exception of the Steinberg character) have odd degrees. The involutions are sign elements, so that Θ_t , t involution, vanishes on all elements of odd order. The value on t is 2^n . Thus this is another example of the existence of signs for odd degree irreducible characters such that the signed sum satisfy the conditions mentioned above.

• Lemma: A sign partition cannot have its smallest part repeated except for the part 1, which may be repeated once.

Proof: Suppose that 1 is repeated $m \ge 2$ times then by MN $[n-1,1](\mu) = [m-1,1](1^m) = m-1$. Thus m = 2. If b > 1 is the smallest part, repeated $m \ge 2$ times then by MN $[n-b,b](\mu) = m$.

We have that much more is true:

Theorem: A sign partition cannot have repeated parts except for the part 1, which may be repeated once.

- Corollary: If μ is a sign partition, then the centralizer of elements of cycle type μ is abelian. Short: Centralizers of sign elements in S_n are abelian.
- There exists a group of order 32 containing a sign element with a non-abelian centralizer. (G. Navarro)
- ▶ Which 2-elements in S_n are sign classes? **Corollary:** Suppose that $n = 2^{r_1} + 2^{r_2} + ... + 2^{r_t}$, where $r_1 > r_2 > ... > r_t \ge 0$. The sign classes of 2-elements in S_n have for n odd (ie. $r_t = 0$) cycle type $(2^{r_1}, 2^{r_2}, ..., 2^{r_t})$. If n = 4k + 2 (ie. $r_t = 1$) we have in addition $(2^{r_1}, 2^{r_2}, ..., 2^{r_{t-1}}, 1^2)$. If n = 8k + 4 (ie. $r_t = 2$) we have in addition $(2^{r_1}, 2^{r_2}, ..., 2^{r_{t-1}}, 2, 1^2)$.

- Assume that the sign partition µ of n has a smallest repeated part a > 1 repeated m > 1 times. We want to show that we can find a not-too-complicated partition λ such that |[λ](µ)| ≥ m.
- In fact we show that λ can be chosen such that all hook lengths of λ outside the first row are ≤ a.
- It is not difficult to see that we may assume that a is the largest part of µ.
- ▶ Thus $\mu = (a^m, a_2, ..., a_k)$ where $a > a_2 > ... > a_k > 0$. Put $t = a_2 + ... + a_k$, so that m = ma + t. We have by the lemma t > 0.

Remarks about the proof II

- Let for $0 \le i \le m \mu_i$ be μ with *i* parts equal to *a* removed. Thus $\mu_0 = \mu$ and $\mu_m = \mu^* = (a_2, ..., a_k)$.
- ▶ The partition $(n a, 1^a)$ has precisely two hooks of length a (since multiplicity of a is ≥ 2 . The MN-formula shows $[n a, 1^a](\mu) = (-1)^{a-1}[n-a](\mu_1) + [n-2a, 1^a](\mu_1) = (-1)^{a-1} + [n-2a, 1^a](\mu_1)$. Inductively we get $[n a, 1^a](\mu) = (m 1)(-1)^{a-1} + [t, 1^a](\mu_{m-1})$. Need to understand the last term $[t, 1^a](\mu_{m-1})$.
- ▶ If $t \leq a$, then $[t, 1^a]$ has only one hook of length a and we get by MN that $[t, 1^a](\mu_{m-1}) = (-1)^{a-1}[t](\mu_m) = (-1)^{a-1}$ and thus $[n-a, 1^a](\mu) = m(-1)^{a-1}$. Thus $[n-a, 1^a]$ may be chosen as the desired λ .

- We are left with the case a < t. This is divided into the subcases t < 2a and t ≥ 2a, which demand similar arguments. We consider only the first subcase.</p>
- If t < 2a then t − a < a. There are exactly a partitions of t obtained by adding an a-hook to the partition (t − a). Suppose that κ_i is obtained by adding a hook with leg length i to (t − a).
- Since t < 2a each κ_i has only one hook of length a. Removing it we get (t − a). Note that κ₀ = (t).
- ▶ By the theorem, which was a consequence of MN, the generalized character $\sum_{i=0}^{a-1} (-1)^i \kappa_i$ takes the value 0 on μ^* , since μ^* has no part divisible by *a*.

Remarks about the proof IV

- Choose an j > 0 such that $(-1)^{j}[\kappa_{j}](\mu^{*}) \ge 0$. (Clearly, the $(-1)^{j}[\kappa_{j}](\mu^{*})$ cannot all be < 0, since the contribution from $[\kappa_{0}] = [t]$ is equal to 1 and $a \ge 4$.)
- Put $\lambda^* = \kappa_j$ so that

$$(-1)^j[\lambda^*](\mu^*) \ge 0.$$

- If λ is obtained from λ* by adding ma to its largest part, then the largest part of λ is at least n − a so that trivially all hook lengths outside the first row are ≤ a. We can then show that |[λ](μ)| ≥ m.
- > This is done by a calculation analogous to above. We get

$$[\lambda](\mu) = [\lambda^*](\mu^*) + m(-1)^j = (-1)^j((-1)^j[\lambda^*](\mu^*) + m).$$

This has absolute value $\geq m$, so that μ is not a sign class.

It would seem that eventually sign partitions have to behave much like *sd*-partitions. In most cases the following seems to hold:

If $\mu' = (a_2, ..., a_k)$ is a sign partition of t, $a > a_2$ and $\mu = (a, a_2, ..., a_k)$ then μ is a sign partition if and only if a > t.

Example: (4,3,2,1) is a (non-*sd*) sign partition of 10, but (a,4,3,2,1) is not a sign partition for a = 5, ..., 10.

However the partitions (1, 1) and $(a, a - 1, 1), a \ge 2$ provide (the only) counterexamples to the above statement in the case a = t. There may be only finitely many counterexamples in the case where a < t.

An open question is the following:

Is it true that if $\mu = (a_1, a_2, ..., a_k)$ is a sign partition, then also $\mu' = (a_2, ..., a_k)$ is an sign partition?