Sign elements in symmetric groups

Jørn B. Olsson
Dept. of Mathematical Sciences
University of Copenhagen, Denmark

Nagoya, September 4, 2008

Introduction

Work in progress

- Question by G. Navarro about characters in symmetric groups, related to a paper by him and I.M. Isaacs. (March 2008)
- Answer to question was surprisingly elegant and inspired the general definition of sign elements and sign classes in finite groups.
- Content of talk:
- Generalities about group characters
- The Isaacs-Navarro question
- Sign elements/classes in finite groups and their relation to the question
- Generalities about characters of symmetric groups
- Special types of sign classes in symmetric groups
- Answering the Isaacs-Navarro question
- A general result about sign classes in symmetric groups

Properties of irreducible characters of finite groups

Background

G finite group. G has a set $\operatorname{Irr}(G)$ of irreducible characters. We list some fundamental properties of the irreducible characters.

- Any $\chi \in \operatorname{lrr}(G)$ is a class function, i.e. constant on the conjugacy classes of G.
- $|\operatorname{lrr}(G)|=k(G)$, the number of conjugacy classes of G.
- Character values are algebraic integers.
- The character table of G is a square $k(G)$-matrix. Rows indexed by irreducible characters and columns by conjugacy classes. Entry (i, j) is the value $\chi_{i}\left(g_{j}\right)$ of character χ_{i} on an element g_{j} in conjugacy class K_{j}. The first column contains the degrees of the irreducible characters $\chi_{i}(1)$.
- The ring of generalized characters:

$$
\mathcal{R}(G)=\left\{\sum_{i=1}^{k(G)} z_{i} \chi_{i} \mid z_{i} \in \mathbb{Z}\right\}
$$

Orthogonality relations for characters

- Row orthogonality (First orthogonality relation):

$$
\sum_{i=1}^{k(G)} \frac{\chi_{r}\left(g_{i}\right) \overline{\chi_{s}\left(g_{i}\right)}}{\left|C_{G}\left(g_{i}\right)\right|}=\delta_{r s} .
$$

- Column orthogonality (Second orthogonality relation):

$$
\sum_{i=1}^{k(G)} \chi_{i}\left(g_{r}\right) \overline{\chi_{i}\left(g_{s}\right)}=\delta_{r s}\left|C_{G}\left(g_{r}\right)\right| .
$$

Question of Isaacs and Navarro

- Background for the question may be found in their preprint entitled "Character Sums and Double Cosets" from 2008.
It is known the the 2-Sylow subgroups of symmetric groups are self-normalizing.
- Question: Let P be 2-Sylow subgroup of S_{n} and $\operatorname{Irr}_{2^{\prime}}\left(S_{n}\right)$ be the set of odd degree irreducible characters of S_{n}. Does there exist signs e_{χ} for $\chi \in \operatorname{lrr}_{2^{\prime}}\left(S_{n}\right)$ such that the generalized character

$$
\Theta=\sum_{\chi \in \operatorname{lrr_{2}}\left(S_{n}\right)} e_{\chi} \chi
$$

satisfies:

$$
\text { (i) } \Theta(x) \text { is divisible by }\left|P / P^{\prime}\right| \text { for all } x \in S_{n} \text {. }
$$

and

$$
\text { (ii) } \Theta(x)=0 \text { for all } x \in S_{n} \text { of odd order. }
$$

Sign classes

- A sign class in a finite group G is a conjugacy class on which all irreducible characters of G take one of the values 0,1 or -1 .
- Elements in sign classes are called sign elements.
- Example: Let $G=S_{3}$. Character table

$$
\left[\begin{array}{rrr}
1 & 1 & 1 \\
2 & 0 & -1 \\
1 & -1 & 1
\end{array}\right]
$$

The classes 2 and 3 are sign classes.

Examples of sign elements

- In abelian groups only elements satisfying $g^{2}=1$ are sign elements.
- Non-central involutions in dihedral groups are sign elements
- In $\operatorname{SL}\left(2,2^{n}\right)$ there is an involution on which all irreducible characters except the Steinberg character take the values 1 or -1 . Thus this is a sign element. This is a very interesting example.
- Sign elements of odd prime order p may occur when you have a self-centralizing p-Sylow subgroup of order p in G. This occurs for example for $p=7$ in the simple group M_{11} which also has sign elements of order 6 .
- Question: Are there other examples of involutions as sign elements in quasisimple groups than the $\operatorname{SL}\left(2,2^{n}\right)$? (None in symmetric groups for $n \geq 5$, as we shall see.)

Support of sign elements

- The support of a sign element $s \in G$ is defined as

$$
\operatorname{supp}(s)=\{\chi \in \operatorname{Irr}(G) \mid \chi(s) \neq 0\}
$$

- Column orthogonality shows that for a sign element $s \in G$ we have that $|\operatorname{supp}(s)|=\left|C_{G}(s)\right|$.

A generalized character

- Suppose that you have a sign element s. For $\chi \in \operatorname{Irr}(G)$ put $e_{\chi}=\chi(s)$. If $e_{\chi} \neq 0$ then e_{χ} is 1 or -1 .
- Consider the generalized character

$$
\Theta_{s}=\sum_{\chi \in \operatorname{Irr}(G)} e_{\chi} \chi
$$

- Column orthogonality shows that Θ_{s} vanishes on all conjugacy classes except the class of s.
- On the class of $s \Theta_{s}$ takes the value $\left|C_{G}(s)\right|$.

A very small example

- Column orthogonality : $\sum_{i=1}^{k(G)} \chi_{i}\left(g_{u}\right) \overline{\chi_{i}\left(g_{v}\right)}=\delta_{u v}\left|C_{G}\left(g_{u}\right)\right|$.
- Let $G=S_{3}$.

$$
\left[\begin{array}{rrr}
\left(1^{3}\right) & (2,1) & (3) \\
\hline \hline 1 & 1 & 1 \\
2 & 0 & -1 \\
1 & -1 & 1
\end{array}\right]
$$

The second and third conjugacy class are sign classes.

- Choose $v=2$. Get that $\Theta_{(2,1)}=\chi_{1}-\chi_{3}$. Thus

$$
\begin{gathered}
\chi_{1}\left(g_{u}\right)-\chi_{3}\left(g_{u}\right)=0 \text { for } u \neq v \\
\chi_{1}\left(g_{u}\right)-\chi_{3}\left(g_{u}\right)=2 \text { for } u=v=2 .
\end{gathered}
$$

- Choose $v=3$. Get that $\Theta_{(3)}=\chi_{1}-\chi_{2}+\chi_{3}$. Thus

$$
\begin{gathered}
\chi_{1}\left(g_{u}\right)-\chi_{2}\left(g_{u}\right)+\chi_{3}\left(g_{u}\right)=0 \text { for } u \neq 3 \\
\chi_{1}\left(g_{u}\right)-\chi_{2}\left(g_{u}\right)+\chi_{3}\left(g_{u}\right)=3 \text { for } u=v=3 .
\end{gathered}
$$

Relevance to Isaacs-Navarro question

- Suppose that you can find a 2-element s in S_{n} which is a sign element with support $\operatorname{lrr}_{2^{\prime}}\left(S_{n}\right)$. Consider $\Theta=\Theta_{s}$.
- Condition (ii) stating that $\Theta(x)=0$ for all $x \in S_{n}$ of odd order is trivially fulfilled, since s is a 2-element
- Condition (i) stating that $\Theta(x)$ is divisible by $\left|P / P^{\prime}\right|$ for all $x \in S_{n}$ requires only a simple calculation in the case $x=s$.

Remark on block orthogonality

- When $s \in G$ is a sign element, the generalized character

$$
\Theta_{s}=\sum_{\chi \in \operatorname{Irr}(G)} e_{\chi} \chi
$$

is the difference between two disjoint multiplicity-free characters Θ_{s}^{+} and Θ_{s}^{-}which coincide on all conjugacy classes except the class of s.

- Here

$$
\Theta_{s}^{+}=\sum_{\chi \in \operatorname{Irr}(G), e_{\chi}=1} \chi, \quad \Theta_{s}^{-}=\sum_{\chi \in \operatorname{Irr}(G), e_{\chi}=-1} \chi
$$

- Block orthogonality shows that if p is a prime number dividing the order of the sign element s and if you split Θ_{s}^{+}and Θ_{s}^{-}into components according to the p-blocks of characters of G, then the values of these components for a given p-block still coincide on all p-regular elements in G. This has consequences for the decomposition numbers.

Characters and partitions

- We will discuss from now on sign classes in the symmetric groups S_{n}.
- The irreducible characters and the conjugacy classes of S_{n} are labelled canonically by the partitions of n.
- A partition λ of n is a sequence of natural numbers

$$
\lambda=\left(a_{1}, a_{2}, \ldots, a_{m}\right)
$$

such that

$$
a_{1} \geq a_{2} \geq \ldots \geq a_{m} \text { and } a_{1}+a_{2}+\ldots+a_{m}=n
$$

Characters of symmetric groups

- The irreducible characters of S_{n} are all integer valued.
- Let $\mathcal{P}(n)$ be the set of partitions of n.
- We write the entries of the character table of S_{n} as $[\lambda](\mu)$, for $\lambda, \mu \in \mathcal{P}(n)$. This is the value of the irreducible character of S_{n}, labelled by λ on the conjugacy class labelled by μ.

Young diagrams

The Young diagram of the partition $\lambda=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ of n is obtained by arranging n boxes/nodes as the following example shows: $\lambda=\left(5^{2}, 4,3,1\right)$:

or

0	0	0	0	0
0	0	0	0	0
0	0	0	0	
0	0	0		
0				

Hooks

- A hook in (the Young diagram of) λ is a subdiagram as marked by bullets below.

- This is the (2,2)-hook $\mathcal{H}_{2,2}(\lambda)$. Its corner node is in position $(2,2)$. The length $h_{2,2}(\lambda)$ of the hook is the number of bullets, i.e. 6. The leg length $b_{2,2}(\lambda)$ of the hook is the number of bullets below the corner node i.e. 2.

Hook diagram

Each node is the "corner" of a hook and has an associated hook length.

\circ	\circ	0	0	0
\circ	6	0	0	\circ
\circ	\circ	\circ	0	
\circ	\circ	\circ		
\circ				

Here is the complete hook diagram of our example:

9	7	6	4	2
8	6	5	3	1
6	4	3	1	
4	2	1		
1				

Hook removal

You remove the hook $\mathcal{H}_{i, j}(\lambda)$ from λ by deleting the nodes of the hook and pushing the diagram together. The result is denoted $\lambda \backslash \mathcal{H}_{i, j}(\lambda)$.

Example:

$\lambda=\left(5^{2}, 4,3,1\right),(i, j)=(2,2)$.

0	0	0	0	0
0	-	-	-	-
0	-	$*$	$*$	
0	-	$*$		
0				

$\lambda \backslash \mathcal{H}_{2,2}(\lambda):$

0	0	0	0	0
0	$*$	$*$		
0	$*$			
0				
0				

The - 's are removed and the *'s are moved.

The Murnaghan-Nakayama formula

If $\lambda=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ and $h \in \mathbb{N}$ define

$$
\mathcal{Y}(\lambda)=\left\{(i, j) \mid 1 \leq i \leq m, 1 \leq j \leq a_{i}\right\}
$$

and

$$
\mathcal{Y}(\lambda)_{h}=\left\{(i, j) \in \mathcal{Y}(\lambda) \mid h_{i, j}(\lambda)=h\right\} .
$$

Theorem:(Murnaghan-Nakayama formula) Let $\lambda, \mu \vdash n$ with $\mu=\left(I_{1}, l_{2}, \ldots, I_{k}\right)$.
For all $r, 1 \leq r \leq k$ we have

$$
[\lambda](\mu)=\sum_{(i, j) \in \mathcal{Y}(\lambda)_{\iota_{r}}}(-1)^{b_{i, j}^{\lambda}}\left[\lambda \backslash \mathcal{H}_{i, j}(\lambda)\right]\left(\mu_{r}\right)
$$

where $\mu_{r}=\left(I_{1}, I_{2}, \ldots, I_{r-1}, I_{r+1}, \ldots, I_{k}\right)$.

Consequence of Murnaghan-Nakayama formula

In his book "The Representation Theory of the Symmetric Groups", Springer Lecture Notes, 1978, G. James lists a useful consequence of the MN-formula.
Theorem: Let ν be a partition of $n-h$. The generalized character

$$
X(\nu, n)=\sum_{\lambda}(-1)^{b_{\lambda}}[\lambda]
$$

vanishes on all $\mu \vdash n$ which do not contain a part equal to h. Here λ runs through all partitions of n for which $\nu=\lambda \backslash \mathcal{H}_{i, j}(\lambda)$ for some
$(i, j) \in \mathcal{Y}(\lambda)_{h}$ and then $b_{\lambda}=b_{i, j}(\lambda)$.
Example: Suppose that $\nu=(2), h=3, n=5$. Then

$$
X(\nu, 5)=[5]-\left[2^{2}, 1\right]+\left[2,1^{3}\right] .
$$

Sign partitions

- We call $\mu \in \mathcal{P}(n)$ a sign partition if the the corresponding conjugacy class is a sign class, ie. if $[\lambda](\mu) \in\{0,1,-1\}$ for all $\lambda \in \mathcal{P}(n)$. The support of a sign partition μ is defined as

$$
\operatorname{supp}(\mu)=\{\lambda \in \mathcal{P}(n) \mid[\lambda](\mu) \neq 0\}
$$

- (n) is always a sign partition
- By the MN-formula $[\lambda](n) \neq 0$ if and only if $\lambda=\left(n-k, 1^{k}\right)$ is a hook partition and then $[\lambda](n)=(-1)^{k}$.

Sign partitions for small values of n

- $n=2$:
(2), $\left(1^{2}\right)$
$n=3$: (3), $(2,1)$
$n=4:(4),(3,1),\left(2,1^{2}\right)$
- $n=5:(5),(4,1),(3,2),\left(3,1^{2}\right)$
$n=6:(6),(5,1),(4,2),\left(4,1^{2}\right),(3,2,1)$
$n=7:(7),(6,1),(5,2),\left(5,1^{2}\right),(4,3),(4,2,1),\left(3,2,1^{2}\right)$
- $n=8:(8),(7,1),(6,2),\left(6,1^{2}\right),(5,3),(5,2,1),(4,3,1)$
- $n=9$:
$(9),(8,1),(7,2),\left(7,1^{2}\right),(6,3),(6,2,1),(5,4),(5,3,1),\left(5,2,1^{2}\right)$
- $n=10:(10),(9,1),(8,2),\left(8,1^{2}\right),(7,3),(7,2,1),(6,4),(6,3,1)$, $\left(6,2,1^{2}\right),(5,4,1),(4,3,2,1)$

Unique path partitions

- Consider the unique path-partitions (for short up-partitions). They are defined as follows.
- If $\mu=\left(l_{1}, l_{2}, \ldots, l_{k}\right)$ and λ are partitions of n, then a μ-path in λ is a sequence $\lambda=\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}=(0)$, where for $i=1 \ldots k \lambda_{i}$ is obtained by removing an I_{i}-hook in λ_{i-1}. Then we call μ is an $u p$-partition if for all λ the number of μ-paths in λ is at most 1 .
- A up-partition is also a sign partition.
- If $\mu=\left(I_{1}, I_{2}, \ldots, I_{k}\right)$ is an up-partition with $k \geq 2$, then also $\mu^{\prime}=\left(l_{2}, \ldots, l_{k}\right)$ is an up-partition.
- $(3,2,1)$ is s sign partition, but not a up-partition, since there are two $(3,2,1)$-paths in $\lambda=(3,2,1)$.

Extending partitions

- Proposition: Let $m>n$. If $\mu^{\prime}=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is a partition of n, and $\mu=\left(m, a_{1}, a_{2}, \ldots, a_{k}\right)$ then μ^{\prime} is a sign partition (respectively a up-partition) of n if and only if μ is a sign partition (respectively a up-partition) of $m+n$.
- The key fact used in the proof is: Let λ be a partition of $m+n$. Since $2 m>m+n \lambda$ cannot contain more than at most one hook of length m. Thus the up-statement is obvious.

sd-partitions

- We call a partition $\mu=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ strongly decreasing (for short sd-partition) if for $i=1, \ldots, k-1$ we have $a_{i}>a_{i+1}+\ldots+a_{k}$.
- If $\mu=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is an sd-partition with $k \geq 2$ then $\mu^{\prime}=\left(a_{2}, \ldots, a_{k}\right)$ is also an sd-partition.
- $\left(3,1^{2}\right)$ is an $u p$-partition, but not an sd-partition
- Proposition: An sd-partition is a up-partition and thus also sign partition.

sd-partitions and non-squashing partitions I

- Hirschhorn and Sellers defined a partition $\mu=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ to be non-squashing if for $i=1, \ldots, k-1$ we have $a_{i} \geq a_{i+1}+\ldots+a_{k}$. For sd-partitions the condition is $a_{i}>a_{i+1}+\ldots+a_{k}$.
- It was shown by Hirschhorn and Sellers that the number of non-squashing partitions of n equals the number of binary partitions of n, ie. partitions whose parts are powers of 2. A bijection was given by Sloane and Sellers.

sd-partitions and non-squashing partitions II

Let $s(n)$ denote the number of $s d$-partitions of n. Put $s(0)=1$. Ordering the set of $s d$-partitions according to their largest part shows that

$$
s(n)=\sum_{i=0}^{\lfloor(n-1) / 2\rfloor} s(i)
$$

Thus for all $k \geq 1$ we have $s(2 k-1)=s(2 k)$. Putting $t(k)=2 s(2 k)=s(2 k-1)+s(2 k)$ it can be shown using recursion formulae, that $t(k)$ equals the number of non-squashing partitions of $2 k$, ie. the number of "binary" partitions of $2 k$.

Answering the Isaacs-Navarro question

- Theorem: Write $n=2^{r_{1}}+2^{r_{2}}+\ldots+2^{r_{t}}$, where $r_{1}>r_{2}>\ldots>r_{t} \geq 0$. Then $\mu=\left(2^{r_{1}}, 2^{r_{2}}, \ldots, 2^{r_{t}}\right)$ is a sd-partition with support $\operatorname{supp}(\mu)=\operatorname{Irr}_{2^{\prime}}\left(S_{n}\right)$. Moreover Θ_{μ} satisfies the conditions (i) and (ii) above. Indeed Θ_{μ} vanishes everywhere except on μ where it takes the value $\left|P / P^{\prime}\right|$.
- Facts needed in proof
- $\left|P / P^{\prime}\right|=z_{\mu}=2^{r_{1}+r_{2}+\ldots+r_{t}}$.
- $\left|/ r r_{2^{\prime}}\left(S_{n}\right)\right|=2^{r_{1}+r_{2}+\ldots+r_{t}}$ (Macdonald, 1971, Bull. London Math. Soc)
- $\operatorname{supp}(\mu) \subseteq \operatorname{Irr}_{2^{\prime}}\left(S_{n}\right)$. (Malle-Navarro-Olsson, 2000, J. Group Theory)
- The last two facts are special cases of more general results utilizes the theory of cores and quotients of partitions.

Another example of existence of signs

In $S L\left(2,2^{n}\right)$ the 2-Sylow subgroup is self centralizing. It has a unique conjugacy class of involutions and $2^{n}+1$ irreducible characters, all of which (with the exception of the Steinberg character) have odd degrees. The involutions are sign elements, so that Θ_{t}, t involution, vanishes on all elements of odd order. The value on t is 2^{n}. Thus this is another example of the existence of signs for odd degree irreducible characters such that the signed sum satisfy the conditions mentioned above.

Towards a classification of sign partitions

- Lemma: A sign partition cannot have its smallest part repeated except for the part 1, which may be repeated once.
Proof: Suppose that 1 is repeated $m \geq 2$ times then by MN $[n-1,1](\mu)=[m-1,1]\left(1^{m}\right)=m-1$. Thus $m=2$. If $b>1$ is the smallest part, repeated $m \geq 2$ times then by MN $[n-b, b](\mu)=m$.
- We have that much more is true:

Theorem: A sign partition cannot have repeated parts except for the part 1, which may be repeated once.

Corollaries

- Corollary: If μ is a sign partition, then the centralizer of elements of cycle type μ is abelian. Short: Centralizers of sign elements in S_{n} are abelian.
- There exists a group of order 32 containing a sign element with a non-abelian centralizer. (G. Navarro)
- Which 2-elements in S_{n} are sign classes?

Corollary: Suppose that $n=2^{r_{1}}+2^{r_{2}}+\ldots+2^{r_{t}}$, where $r_{1}>r_{2}>\ldots>r_{t} \geq 0$. The sign classes of 2-elements in S_{n} have for n odd (ie. $r_{t}=0$) cycle type ($2^{r_{1}}, 2^{r_{2}}, \ldots, 2^{r_{t}}$). If $n=4 k+2$ (ie. $r_{t}=1$) we have in addition $\left(2^{r_{1}}, 2^{r_{2}}, \ldots, 2^{r_{t-1}}, 1^{2}\right)$. If $n=8 k+4$ (ie. $\left.r_{t}=2\right)$ we have in addition $\left(2^{r_{1}}, 2^{r_{2}}, \ldots, 2^{r_{t-1}}, 2,1^{2}\right)$.

Remarks about the proof I

- Assume that the sign partition μ of n has a smallest repeated part $a>1$ repeated $m>1$ times. We want to show that we can find a not-too-complicated partition λ such that $|[\lambda](\mu)| \geq m$.
- In fact we show that λ can be chosen such that all hook lengths of λ outside the first row are $\leq a$.
- It is not difficult to see that we may assume that a is the largest part of μ.
- Thus $\mu=\left(a^{m}, a_{2}, \ldots, a_{k}\right)$ where $a>a_{2}>\ldots>a_{k}>0$. Put $t=a_{2}+\ldots+a_{k}$, so that $m=m a+t$. We have by the lemma $t>0$.

Remarks about the proof II

- Let for $0 \leq i \leq m \mu_{i}$ be μ with i parts equal to a removed. Thus $\mu_{0}=\mu$ and $\mu_{m}=\mu^{*}=\left(a_{2}, \ldots, a_{k}\right)$.
- The partition $\left(n-a, 1^{a}\right)$ has precisely two hooks of length a (since multiplicity of a is ≥ 2. The MN-formula shows $\left[n-a, 1^{a}\right](\mu)=$ $(-1)^{a-1}[n-a]\left(\mu_{1}\right)+\left[n-2 a, 1^{a}\right]\left(\mu_{1}\right)=(-1)^{a-1}+\left[n-2 a, 1^{a}\right]\left(\mu_{1}\right)$. Inductively we get $\left[n-a, 1^{a}\right](\mu)=(m-1)(-1)^{a-1}+\left[t, 1^{a}\right]\left(\mu_{m-1}\right)$. Need to understand the last term $\left[t, 1^{a}\right]\left(\mu_{m-1}\right)$.
- If $t \leq a$, then $\left[t, 1^{a}\right]$ has only one hook of length a and we get by MN that $\left[t, 1^{a}\right]\left(\mu_{m-1}\right)=(-1)^{a-1}[t]\left(\mu_{m}\right)=(-1)^{a-1}$ and thus $\left[n-a, 1^{a}\right](\mu)=m(-1)^{a-1}$. Thus $\left[n-a, 1^{a}\right]$ may be chosen as the desired λ.

Remarks about the proof III

- We are left with the case $a<t$. This is divided into the subcases $t<2 a$ and $t \geq 2 a$, which demand similar arguments. We consider only the first subcase.
- If $t<2 a$ then $t-a<a$. There are exactly a partitions of t obtained by adding an a-hook to the partition $(t-a)$. Suppose that κ_{i} is obtained by adding a hook with leg length i to $(t-a)$.
- Since $t<2 a$ each κ_{i} has only one hook of length a. Removing it we get $(t-a)$. Note that $\kappa_{0}=(t)$.
- By the theorem, which was a consequence of MN, the generalized character $\sum_{i=0}^{a-1}(-1)^{i} \kappa_{i}$ takes the value 0 on μ^{*}, since μ^{*} has no part divisible by a.

Remarks about the proof IV

- Choose an $j>0$ such that $(-1)^{j}\left[\kappa_{j}\right]\left(\mu^{*}\right) \geq 0$. (Clearly, the $(-1)^{j}\left[\kappa_{j}\right]\left(\mu^{*}\right)$ cannot all be <0, since the contribution from $\left[\kappa_{0}\right]=[t]$ is equal to 1 and $a \geq 4$.)
- Put $\lambda^{*}=\kappa_{j}$ so that

$$
(-1)^{j}\left[\lambda^{*}\right]\left(\mu^{*}\right) \geq 0 .
$$

- If λ is obtained from λ^{*} by adding ma to its largest part, then the largest part of λ is at least $n-a$ so that trivially all hook lengths outside the first row are $\leq a$. We can then show that $|[\lambda](\mu)| \geq m$.
- This is done by a calculation analogous to above. We get

$$
[\lambda](\mu)=\left[\lambda^{*}\right]\left(\mu^{*}\right)+m(-1)^{j}=(-1)^{j}\left((-1)^{j}\left[\lambda^{*}\right]\left(\mu^{*}\right)+m\right) .
$$

This has absolute value $\geq m$, so that μ is not a sign class.

What is next?

It would seem that eventually sign partitions have to behave much like sd-partitions. In most cases the following seems to hold:

If $\mu^{\prime}=\left(a_{2}, \ldots, a_{k}\right)$ is a sign partition of $t, a>a_{2}$ and $\mu=\left(a, a_{2}, \ldots, a_{k}\right)$ then μ is a sign partition if and only if a $>t$.

Example: $(4,3,2,1)$ is a (non-sd) sign partition of 10 , but $(a, 4,3,2,1)$ is not a sign partition for $a=5, \ldots, 10$.

However the partitions (1,1) and ($a, a-1,1$), $a \geq 2$ provide (the only) counterexamples to the above statement in the case $a=t$. There may be only finitely many counterexamples in the case where $a<t$.
An open question is the following:
Is it true that if $\mu=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is a sign partition, then also $\mu^{\prime}=\left(a_{2}, \ldots, a_{k}\right)$ is an sign partition?

