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The An T -system as a recursion relation

T -systems [Kirillov-Reshetikhin] were originally formulated as“fusion relations” for
the transfer matrix of the (inhomogeneous) Heisenberg spin chain.
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For An, if the transfer matrix corresponding to the auxiliary space Viωα(ζ) (a

finite-dimensional Yangian module, or Uq(bsl)n−1-module, with “rectangular highest

weight”) is denoted by Tα,i(ζ) then:

Tα,k+1(ζ)Tα,k−1(ζ) + Tα+1,k(ζ)Tα−1,k(ζ) = Tα,k(ζ + 1)Tα,k(ζ − 1).

This can be considered as a two-step recursion formula in k:

Tα,j;k+1Tα,j;k−1 = Tα,j+1;kTα,j−1;k −
Y

β∼α

Tβ,j;k, α ∈ Ir, k ∈ Z, j ∈ Z + c.

with β ∼ α if Cα,β = −1 (the Cartan matrix). The parameter j takes the place of ζ.

This formula extends to any simply-laced g, with KR-modules in Auxiliary space.
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Generalized T -systems (“simply-laced” type)

Let Γ a skew-symmetric matrix representing a finite quiver without loops:

(Γ)ij = k > 0 ⇔ i j

Geiss-Leclerc-Schröer (2007) introduced a family {Tα,j;k} in the context of
preprojective algebras, which satisfies the recursion relations:

Tα,j;k+1Tα;j;k−1 = Tα,j+1;kTα,j−1;k −
Y

β

T
[Γβ,α]+
β,j−1;k T

[Γα,β]+
β,j+1;k

where [m]+ is the non-negative part of m.
The indices α, β take values in the nodes of the quiver graph. The indices j and k take

values in Z, modulo boundary conditions (see below).

This can be taken to be a two-step recursion relation in k for Tα,j;k.

The special case of the simply-laced T -system for transfer matrices is when Γ is the
signed incidence matrix (pick an orientation on the Dynkin diagram).
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Q-systems

If C is the Cartan matrix of a simply-laced Lie algebra, the Q-system is the
combinatorial limit (ζ →∞) of the T -system and can be written as:

Qα;k+1Qα;k−1 = Q2
α;k −

Y

β

Q
[−Cβ,α]+
β;k , α ∈ Ir = {1, ..., r}, k ∈ Z

r is the rank of the algebra g.

In the non simply-laced case,

Qα;k+1Qα;k−1 = Q2
α;k −

Y

β∼α

T
(α)
β;k

where

T
(α)
β,k =

|Cα,β |−1Y

i=1

Qβ,⌊(tβk+i)/tα⌋

where tα = 2 for the short roots of Br, Cr and F4 and t2 = 3 for the short root of
G2. [KR, Kuniba-Nakanishi-Suzuki...]
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Boundary conditions!!

Need to specify boundary conditions in order to specify the family of solutions. We
need two boundary conditions as this is a two-step recursion relation. A possible
choice is (the KR-point):

1 For the T -systems, the boundary conditions are

Tα,j;0 = 1 for all α ∈ Ir, j ∈ Z.

Here Ir = {1, ..., r} where r is the rank of the Lie algebra or the number of nodes in
the quiver graph.

2 For the Q-systems,
Qα,0 = 1 for all α ∈ Ir .

For the second boundary condition in the direction of k we take Tα,j;1 and Qα,1 to
be formal variable. Solutions are expressed in terms of these formal variables.

Under those conditions, it is known that
1 Solutions of the T -system for the transfer matrices are q-characters of

Kirillov-Reshetikhin modules parametrized by the highest weight iωα and spectral
parameter ζ [Hernandez].

2 Solutions of the Q-system are the Uq(g)-characters of the same KR-modules. This is
one version of the Kirillov-Reshetikhin conjecture. [KR,Nakajima, Hernandez]

3 For GLS, this is also the natural boundary condition.
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KR point

Evaluating the equations

Tα,j;k+1Tα,j;k−1 = Tα,j+1;kTα,j−1;k −
Y

β∼α

Tβ,j;k,

Tα,j;k+1Tα;j;k−1 = Tα,j+1;kTα,j−1;k −
Y

β

T
[Γβ,α]+
β,j−1;k T

[Γα,β]+
β,j+1;k ,

Qα;k+1Qα;k−1 = Q2
α;k −

Y

β

T
(α)
β;k,

when k = 0 at the KR-point Tα,j;0 = Qα,0 = T
(α)
β,0 = 1, The RHS=0.

Another way to say this is: at the KR-point,

Tα,j;−1 = Qα,−1 = 0.
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A property of Q and T -systems with KR boundary

Theorem (Di Francesco, K)

The T -systems and Q-systems introduced above (and generalizations) can be formulated
as cluster algebra evolutions. After evaluation of cluster variables at the KR boundary
conditions, all cluster variables are polynomials in the formal variables Tα,j;1 or Qα,1.
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Cluster algebras without coefficients [Fomin, Zelevinsky]

A cluster algebra of rank n is an evolution on an n-ary tree Tn with labeled edges.

Each node is connected to n edges labeled distinctly. For example, if n = 4 we have:

1

2 3

4

Each node has associated with it a set:
− a cluster variable x = (x1, ..., xn)
− an exchange matrix B: an n× n skew-symmetric integer matrix.

A cluster algebra is a dynamical evolution of the variables along this tree: If nodes t
and t′ are connected with an edge labeled by k:

t t′
k

then (x, B)t′ = µk((x,B)t).

The map µk is called a mutation.
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Mutations

Mutations act as follows on (x, B):

µk : xj 7→

8
><
>:

Q
j x

[Bij ]+
i +

Q
i x

[−Bij ]+
i

xj
, j = k

xj , j 6= k.

([m]+ is the positive part of m.)

µk : Bij 7→


−Bij If i = k or j = k;
Bij + sign(Bik)[BikBkj ]+ otherwise.

Cluster mutations on cluster variables are rational transformations.

The kth column of B determines the mutation in the direction k.

The mutations on cluster variables are subtraction-free expressions!

Apart from this last detail, evolutions of cluster variables look like T -system or
Q-system evolutions.
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Graphical representations of mutations of B

Any skew-symmetric integer matrix corresponds to a quiver graph. If Bij = k > 0 then
the graph contains the arrow

i j
k

Example:

B =

0
BB@

0 0 −2 1
0 0 1 −2
2 −1 0 0
−1 2 0 0

1
CCA

corresponds to the quiver

3 4

1 2

2 2

Then it is possible to illustrate an evolution of B along the cluster tree...
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Mutations on the quiver

i j
r

k

s t
µk

i

k

j

s

r + st

t
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Cluster algebras with coefficients

T -systems and Q-systems, as evolutions in the ”time” direction k, are not
subtraction free expressions. To fix this detail we can either
(1) renormalize T ’s and Q’s (possible for simple Lie algebras) or
(2) introduce coefficients.

Coefficients: Pick m new variables (xn+1, ..., xn+m) = (q1, ..., qm) and add m rows
to the mutation matrix B representing their connectivity to the cluster variables.
These variables do not evolve, so we do not bother with adding m columns to B,
and the extended matrix eB is now rectangular.

The evolution of the cluster variables (x1, ..., xn) and eB are given by the same

formulas, with B replaced by eB.
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Q-systems as cluster algebra evolutions

Theorem (Kedem)

Let C be the Cartan matrix for a simply-laced Lie algebra. The set of equations

Qα,k+1 = Q−1
α,k−1

0
@Q2

α,k + qα

Y

β

Q
[−Cβ,α]+
β,k

1
A

for all α ∈ Ir and k ∈ Z are all cluster mutations in the cluster algebra defined by the
”seed”

x = (Q1,0, ..., Qr,0; Q1,1, ..., Qr,1; q1, ..., qr), eB =

0
@

0 −C
C 0
−I I

1
A

Remarks:
• The coefficients qα do not mutate. When qα = −1, this is the Q-system.
• The full cluster algebra defined by this seed contains variables which are do not satisfy
this equation.
• The subgraph of the cluster tree consisting of Qs is a bipartite ”strip” in the full cluster
tree.
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The subgraph corresponding to Q-system evolutions

A mutation of a cluster seed x will represent a Q-system evolution only when the
variables connected by the incidence matrix are at the ”right” point.

sl2 there is only one choice:

2 1 2 1 2
· · ·· · ·

For sl3, the subgraph is as follows:

· · · · · ·

4 2 4

3 1 34 2 4

3 1 3

For sl4 it is more complicated:
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Cluster graph for sl4
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A subgraph containing the full Q-system

Lemma

All Q-system equations and all the variables {Qα,k} are obtained in the following
subgraph:

1 From the seed x0 = (Qα,0; Qα,1)α∈Ir act with any sequence of distinct mutations
from the set (µα)α∈Ir . OR, with any sequence from the set (µα)α∈r+Ir . All nodes
are reached by Q-system evolutions.

2 From the node
Q

α∈Ir
µα(x0), act with any sequence of distinct mutations from the

set (µα)α∈r+Ir . From the node
Q

α∈r+Ir
µα(x0), act with any sequence of distinct

mutations from the set (µα)α∈Ir .

3 Repeat by periodicity.

For example, for sl4, it is sufficient to consider the subgraph:
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Restricted cluster graph for sl4
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The bipartite cluster graph

For mutations µi, µj which commute Bij = 0. We can define a compound mutation
µI = µi1 ◦ · · · ◦ µim if all mutations in the sequence commute.

For the simply-laced Lie algebras there is a shorthand for the subgraph described
above: The bipartite graph:

(k − 1)′ k k′ k + 1 (k + 1)′
· · · · · ·

I ′
r Ir I ′

r Ir

where Ir and I ′
r = {r + 1, ..., 2r}.

All Q-system evolutions for the simply-laced algebras are encoded in this graph. The
union of the cluster seeds at all the (unprimed) nodes is the full set
{Qα,k : α ∈ Ir, k ∈ Z}.

The cluster seed at node k is (Qα,2k; Qα,2k+2)α∈Ir . The exchange matrix at each

unprimed node is eB.
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Graphs for non simply-laced g

Theorem

Let C be the Cartan matrix for a non simply-laced Lie algebra. The set of equations

Qα,k+1 = Q−1
α,k−1

0
@Q2

α,k + qα

Y

β

T
(α)
β,k

1
A

for all α ∈ Ir and k ∈ Z are all cluster mutations in the cluster algebra defined by the
”seed”

x = (Q1,0, ..., Qr,0; Q1,1, ..., Qr,1; q1, ..., qr), eB =

0
@

Ct − C −Ct

C 0
−I I

1
A

Here, the graphs are not bipartite: For Br, Cr, F4,

k k(1) k(2) k(3) k(4) k + 1
· · · · · ·

Π< Π> Π′
< Π< Π′

Where Π< is the set indices of short roots, Π′
> is the set of indices of long roots shifted by r,

etc.
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T -systems as cluster algebra evolutions

Theorem

The system of equations of the form

Tα,j;k+1Tα,j;k−1 =
Y

j′

T
[Cj′,j

α,α ]+

α,j′;k + qα

Y

α,j′

T
[−C

j′,j
β,α

]+

β,j′;k .

is a subset of the mutations of the cluster algebra with seed (for some fixed k ∈ Z)

x = (T2k,T2k+1; q1, ..., qr}, eB =

0
@

0 −C
C 0
−E E

1
A

where Tk = (Tα,j;k)α∈Ir,j∈Z, and Eqα;β,j = δα,β , provided that the matrix C = P − A
(where P and A have non-negative entries) has the properties:

1 C is symmetric (the simply-laced case);

2 A commutes with P .

3
P

k P i,j
α,β = 2δα,β .

In the cases above, P is the ”shift” matrix P i,j
α,β = δα,β(δi,j+1 + δi,j−1). The evolution

subgraph is the bipartite graph.
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Laurent Phenomenon

Theorem (Fomin-Zelevinsky)

The Laurent phenomenon: The cluster variables at any node of a cluster algebra are
Laurent polynomials in the cluster variables at any other node in the cluster algebra.

This is remarkable because the evolution is a rational function.

Corollary (DFK)

Polynomiality for KR boundary conditions: Let t be a node with cluster variables
x = (a1, ..., an; b1, ..., bm) = (a,b) and exchange matrix B such that Bij = 0 for
i, j ≤ n. Moreover, we assume that Ni(b) := aiµi(ai) vanishes when evaluated at the
point b = b0 for all i. (The numerator is not a function of ai because Bij = 0 if
i, j ≤ n). Then all cluster variables in the cluster algebra are polynomials of a when
evaluated at the point b0.

In the case of KR boundary conditions, we have polynomiality.
The case above holds for all the systems above at the KR point (with qα = −1).
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Proof for rank 2

Lemma (Rank 2 case of polynomiality)

Suppose we have a cluster variable (a, b) at node t, such that

a′ = µ2(a) := N(b)/a

with N(b0) = 0 for some b0, then any other cluster variable z(a, b0) is a polynomial in a.

Proof.

z(a, b) = b−mP
n Pn(b)an (z is a Laurent polynomial)

= b−mP
n Pn(b)N(b)n(a′)−n (from exchange relation)

Here, Pn(b) is a polynomial in b and so is N(b). By the Laurent phenomenon, if n < 0,
Pn(b) is divisible by N(b)n. Therefore, if n < 0, Pn(b0) = 0. Therefore, z(a, b0) is a
polynomial in a.

This generalizes easily to higher rank.
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Application to combinatorial KR conjecture

The Heisenberg spin chain (periodic boundary conditions)

V1(ζ1) V2(ζ2) · · · VN(ζN )

Problem: Find the eigenvectors and eigenvalues of the transfer matrix or
Hamiltonian, and prove that you have all of them [Bethe 1931, Kirillov-Reshetikhin
80’s, many others].

Vi(ζi) are ”special modules” of Y (g) or Uq(bg) [KR-modules defined by Chari;
applied by Kuniba/Nakanishi].

The Hilbert space is

H = V1(ζ1)⊗ · · · ⊗ VN(ζN ) ≃
g
⊕

λ∈Λ+

V (λ)⊕M{Vi},λ .

Completeness problem: KR conjectured that (1) Bethe vectors enumerated by
“rigged configuraitons” and (2) The set of Bethe vectors is complete:

|{rigged configs({Vi}, λ)}| = M{Vi},λ
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The number of rigged configurations

Define the binomial coefficient
 

m + p

m

!
=

(p + m)(p + m− 1) · · · (p + 1)

m!
, p ∈ Z

Define n = (nα,m)α∈{1,...,r},m∈Z+
with nα,m the number of modules Vi(ζi) of KR

type with highest weight mωα.

for g simply-laced, the number of rigged configurations is limk→∞ of

Mn,λ =
X

m∈Z
r×k
+

pα,i≥0

pα,k=ℓα

kY

i=1

 
pα,i(n,m) + mα,i

mα,i

!

with
pα,i =

X

j

min(i, j)nα,j −
X

β

X

j

Cα,β min(i, j)mβ,j , λ =
X

α

ℓαωα

Combinatorial KR conjecture is

Mn,λ := dim (Homg (V1(ζ1)⊗ · · · ⊗ VN(ζN ), Vℓ)) = lim
k→∞

Mn,λ

Proved by KR for An; Proof for special cases [Kirillov, Schilling, Shimozono, Okado] where

the crystal picture is available by using the KKR bijection.
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The HKOTY conjecture

In general, it can be proved that [Bethe, KR, HKOTY]

lim
k→∞

Nn,λ = lim
k→∞

X

m∈Z
r×k
+

pα,i∈Z

pα,k=ℓα

kY

i=1

 
pα,i(n,m) + mα,i

mα,i

!
= Homg

 
Y

α,i

KR
⊗nα,i

α,i , V (λ)

!
.

provided that Solutions of the Q-system are characters of KR-modules. (proved by
[KR,Nakajima,Hernandez])

The HKOTY M = N conjecture is that

M
n,λ =

X

pα,i≥0

kY

i=1

“pα,i(n, m) + mα,i

mα,i

”
=

X

pα,i∈Z

kY

i=1

“pα,i(n, m) + mα,i

mα,i

”
= N

n,λ

Theorem (Di Francesco-K, 07)

The HKOTY identity is true for all simple Lie algebras, provided that the solutions of the
Q-system are polynomials in the initial variables Qα,1 after evaluation at the boundary
condition Qα,0 = 1.
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Proof that M = N for g = sl2:

1 The HKOTY identity has the form :

X

m:Restrictions

f(m) =
X

m

f(m)

2 Construct a generating function in the formal variables {t, u1, u2, ..., uk}:

Zn,ℓ(t;u) =
X

m∈Zk

t−q
kY

i=1

 
mi + pi + q

mi

!
upi+q

i , q = ℓ−
X

i

i(ni − 2mi)

Notice: No restrictions on the summation!

3 The constant term in t is the term with q = 0, which is one of the restrictions on
our sum.

4 Nn,ℓ = The constant term of Zn,ℓ(t; 1, ..., 1) in t.

5 Mn,ℓ = The constant term in t of only the positive powers in {ui} of Zn,ℓ(t;u),
evaluated at u1 = ... = uk = 1.

6 We must show these constant terms are equal.
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Properties of the generating function Z(t;u)

Factorization: The generating function Z has nice properties: It factorizes

Zl,n =
Q1(t)Qk(t;u)l+1

Qk+1(t;u)l+1

kY

j=1

Qj(t;u)nj

uj

in terms of functions Qm(t;u) which satisfy deformed Q-system:

Qm+1(t;u)Qm−1(t;u) =
Qm(t;u)2 − 1

um
, Q0 = 1, Q1 = t, (m > 1).

Lemma (Translation property)

The deformed Q-system is equivalent to the system

Qk+1(t,u) = Qk(t′, u′), t′ = Q2, u′
1 = Q1u2, u′

j = uj+1

with appropriate boundary conditions. (This is used to prove the factorization formula by
induction from the definition. The function Q2(t, u) = (t2 − 1)/u.)
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When {u = (1, ..., 1)} the deformed Q-system reduces to the Q-system for sl2

Qm+1Qm−1 = Q2
m − 1, Q0 = 1, Q1 = t,

and solutions are Chebyshev polynomials of the second kind.

Therefore, Qm(t; 1, ..., 1) are all polynomials in t.

The proof is a direct calculation using
1 The translation recursion of Q(t, u);
2 The factorization of the generating function Zℓ,n(t, u);
3 Solutions of the Q-system are polynomials in t.

Lemma (DFK)

The constant term in t of Zℓ,n(t,u) when uj = 1 for all j has no contribution from
negative powers of uj , j = 1, ..., k.

This implies the proof of HKOTY’s identity M = N for sl2.
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General case

For higher rank algebras, there is always a factorization of the generating function
in terms of solutions of a deformed Q-system. The proof that M = N always
depends only on the fact that:

Lemma

The solutions {Qα,m}α∈[1,...,r] of the recursion relation known as the “Q-system” for any
g are polynomials in the initial data {Qα,1}α.

This follows from the formulation as a cluster algebra and the polynomiality of
solutions with KR-boundary conditions. (A purely combinatorial argument)

It also follows from representation theoretical arguments:

Theorem (Kirillov-Reshetikhin, Nakajima, Hernandez)

solutions of the Q-system with m > 0 where Qα,0 = 1 are characters of KR-modules of
Uq(bg) restricted to Uq(g).

The trivial and fundamental KR-modules generate the Groethendieck group
finite-dimensional representations, hence all characters of KR-modules are
polynomials in tα = {Qα,1}α. (Natural generalization of Chebyshev polynomials.)
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Application to proof of Feigin-Loktev conjecture

Feigin and Loktev defined a grading on the tensor product of finite-dimensional
g-modules:

V1 ⊗ · · · ⊗ VN ≃ ⊕
λ
V

⊕M{Vi},λ

λ

=⇒ V1 ⋆ · · · ⋆ VN(ζ1, ..., ζN ) ≃ ⊕
λ
⊕
n

V
⊕M{Vi},λ[n]

λ

Example: For g = sl2 and V the fundamental representation, V ⊗3 ≃ V3 ⊕ V ⊕2
1

whereas
V ⋆ V ⋆ V ≃ V3[0]⊕ V1[1]⊕ V1[2]

The LHS is a g[t]-module, and the decomposition is into g-modules.

The definition depends on some “localization parameters” of the g[t]-modules Vi.
The FL-conjecture is

Conjecture (Feigin-Loktev)

The multiplicities M{Vi},λ[n] do not depend on the localization parameters, for
“sufficiently nice” modules Vi.
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Define M{Vi},λ(q) =
P

n qnM{Vi},λ[n]. Then

Theorem (Ardonne,K)

1 For any simple Lie algebra g, if Vi are any sequence of g[t]-modules of Kirillov-Reshetikhin
type [Chari], then M{Vi},λ(q) is bounded from above by HKOTY’s graded M -sum formula.

2 M{Vi},λ(1) is bounded from below by the dimension of the multiplicity space of the tensor
product of finite-dimensional modules.

3 If M
n,λ(1) is equal to the dimension of the multiplicity space (the combinatorial

KR-conjecture) then the equality holds in the first statement.

The proof of the M = N conjecture therefore completes the proof of the
FL-conjecture in this case, because the explicit formula for the multiplicity does not
depend on the localization parameters.
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Chari’s

g[t]-modules

→˛̨
˛̨Homg

„
⊗

α,m
C

⊗nα,m
α,m , V (λ)

«˛̨
˛̨

≤

Feigin-Loktev

fusion product

→

|Homg (F∗
n

, V (λ))|

≤

Mn,λ
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More about the Ar Q-system

The Q-system is a very special cluster algebra – integrable. This allows us to prove
properties of this cluster algebra.

Instead of considering the cluster algebra with coefficients, we can renormalize any
Q-system corresponding to a simple Lie algebra, and write the An-system as

Rα,k+1Rα,k−1 = R2
α,k + Rα−1,kRα+1,k

with R0,k = Rr+1,k = 1 for all k, Rα,k = ǫαQα,k.

The exchange matrix B corresponds to the quiver (A5):

1 2 3

r + 1 r + 2 r + 3

4

r + 4

5

r + 5

Q-system evolutions for Ar are those which occur at nodes on the quiver graph such
that

1 There is only one incoming double arrow from the node;
2 There are only outgoing single arrows to the node.
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Positivity conjecture

Without imposing the KR-boundary condition, there is a conjecture of Fomin and
Zelevinsky (for any cluster algebra)

Conjecture

The cluster variables at any node of a cluster graph are Laurent polynomials with
positive coefficients of the cluster variables at any other node of the cluster graph.

Claim: We can prove positivity using the integrability of the system for the cluster
variables in the subgraph corresponding to Q-system evolutions (see talk by Di
Francesco).
The subgraph can be described as: If the node has a cluster variable which includes the
elements {Qβ,n : Cβ,α 6= 0}, then an evolution along the edge labeled by α (if n is
even) or r + α (if n is odd) is a Q-system evolution.
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Generalizations

There are more general Q-systems than the ones considered here. For all of them the
polynomiality lemma holds, so there is an HKOTY identity corresponding to them.

A direct cluster-theoretical and geometric interpretation of this identity is missing.

We do not have a representation-theoretical interpretation for the other cluster
variables (outside the Q-system zone). With KR-boundary conditions, they are
virtual characters.

Proof of positivity outside the “integrable” subgraph corresponding to Q-system
evolutions is open.
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