Dyck partitions，

quasí－minuscule quotiens and

Kazhdan－Lusztig polynomials

Federico Incitti

Nagoya 名古屋 5／9／2008
partly based on a joint work with
Francesco Brenti and Mario Marietti

Outline

1. Background
2. Parabolic Kazhdan-Lusztig polynomials
3. Combinatorics of quasi-minuscule quotients
4. •-Dyck partitions
5. Main result
6. Open problems
7. Recent enumerative results

1. Background

1.1 Coxeter groups

W : Coxeter group $\quad S$: set of generators
Set of reflections of $W: \quad T=\left\{v s v^{-1}: v \in W, s \in S\right\}$.
Let $v \in W$. The length of v is

$$
\ell(v)=\min \{k: v \text { is a product of } k \text { generators }\} .
$$

The (right) descent set of v is

$$
D(v)=\{s \in S: \ell(v s)<\ell(v)\} .
$$

Bruhat graph of W : directed graph with W as vertex set and

$$
u \rightarrow v \quad \Leftrightarrow \quad u^{-1} v \in T \quad \text { and } \quad \ell(u)<\ell(v) .
$$

Bruhat order of W : partial order on W defined by

$$
u \leqslant v \quad \Leftrightarrow \quad u=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{k}=v
$$

W, with the Bruhat order, is a graded poset with rank function ℓ.

For $u, v \in W$, with $u<v$, we set

$$
\ell(u, v)=\ell(v)-\ell(u) \quad \text { (distance in the Bruhat order). }
$$

Let $J \subseteq S$ be a fixed subset of generators.
The parabolic subgroup of W generated by J is

$$
W_{J}=\langle J\rangle .
$$

The quotient of W by J is

$$
W^{J}=\{v \in W: \ell(s v)>\ell(v) \text { for all } s \in J\} .
$$

We will consider particular quotients of the symmetric group.

1.2 The symmetric group

$$
\mathbf{P}=\{1,2,3, \ldots\}, \quad[n]=\{1,2, \ldots, n\} \quad(n \in \mathbf{P}),
$$

Symmetric group: $\quad S_{n}=\{v:[n] \rightarrow[n]$ bijection $\}$.
We denote $v \in S_{n}$ by the word $v(1) v(2) \ldots v(n)$ and by its diagram.
Example. $v=61523748 \in S_{8}$ has diagram

S_{n} is a Coxeter group, with generators the simple transpositions:

$$
S=\{(1,2),(2,3), \ldots,(n-1, n)\}
$$

When we refer to these generators, the transposition $(i, i+1)$ is simply denoted by i. With this convention, the set of generators of S_{n} is

$$
S=[n-1]
$$

The reflections are all the transpositions:

$$
T=\left\{(i, j) \in[n]^{2}: i<j\right\} .
$$

Let $v \in S_{n}$. The length of v is the number of its inversions:

$$
\ell(v)=\mid\left\{(i, j) \in[n]^{2}: i<j \text { and } v(i)>v(j)\right\} \mid
$$

The descent set of v is

$$
D(v)=|\{i \in[n-1]: v(i)>v(i+1)\}| .
$$

Let $J \subseteq[n-1]$. The quotient of S_{n} by J is

$$
\left(S_{n}\right)^{J}=\left\{v \in S_{n}: v^{-1}(r)<v^{-1}(r+1) \text { for all } r \in J\right\}
$$

The maximal quotients of S_{n} are obtained by taking

$$
J=[n-1] \backslash\{i\} \quad(i \in[n-1])
$$

The quasi-minuscule quotients of S_{n} are obtained by taking

$$
J=[n-1] \backslash\{i-1, i\} \quad(2 \leqslant i \leqslant n-1)
$$

or

$$
J=[n-1] \backslash\{1, n-1\} .
$$

In this talk we study the quasi-minuscule quotiens of S_{n}.

1.3 Partitions and lattice paths

We identify a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \subseteq\left(n^{m}\right)$ with its diagram:

$$
\left\{(i, j) \in \mathbf{P}^{2}: 1 \leqslant i \leqslant k \text { and } 1 \leqslant j \leqslant \lambda_{i}\right\}
$$

Example. $\quad \lambda=(3,2,2,1,1) \subseteq\left(4^{5}\right)$.

English notation

French notation

Our notation (Japanese?)

Given a partition $\lambda \subseteq\left(n^{m}\right)$, the path associated with λ is the lattice path from $(0, m)$ to $(n+m, n)$, with steps $(1,1)$ (up steps) and ($1,-1$) (down steps) which is the upper border of the diagram of λ :

$$
\operatorname{path}(\lambda)=x_{1} x_{2} \ldots x_{n+m}, \quad \text { with } x_{k} \in\{\mathrm{U}, \mathrm{D}\}
$$

Note that path (λ) has exactly n U's and m D's.

Example. $\lambda=(3,2,2,1,1) \subseteq\left(4^{5}\right)$.

We denote the set of all integer partitions by \mathcal{P}. It is well known that \mathcal{P}, partially ordered by set inclusion, is a lattice (the Young lattice).

> Sublattice of all partitions $\lambda \subseteq(3,2,1)$:

Let $\lambda, \mu \in \mathcal{P}$, with $\mu \subseteq \lambda$. Then we call $\lambda \backslash \mu$ a skew partition.
A skew partition is a border strip (also called a ribbon) if it contains no 2×2 square of cells. For brevity, we call a connected (by which we mean "rookwise connected") border strip a cbs.

The outer border strip θ of $\lambda \backslash \mu$ is the set of cells of $\lambda \backslash \mu$ such that the cell directly above it is not in $\lambda \backslash \mu$.

A cbs $\theta \subset \mathbf{P}^{2}$ is called a Dyck cbs if it is a "Dyck path", which means that no cell of θ has level strictly less than that of either the leftmost or the rightmost of its cells. (In particular, in a Dyck cbs the leftmost and rightmost cells have the same level.)

Dyck

non-Dyck

non-Dyck

Let $\lambda \backslash \mu \subset \mathbf{P}^{2}$ be a skew partition.

Recall that $\lambda \backslash \mu$ is defined to be Dyck in the following inductive way:
(1) the empty partition is Dyck,
(2) if $\lambda \backslash \mu$ is connected, then $\lambda \backslash \mu$ is Dyck if and only if (a) its outer border strip θ is a Dyck cbs,
(b) $(\lambda \backslash \mu) \backslash \theta$ is Dyck,
(3) if $\lambda \backslash \mu$ is not connected, then $\lambda \backslash \mu$ is Dyck if and only if all of its connected components are Dyck.

Let $\lambda \backslash \mu \subset \mathbf{P}^{2}$ be a skew partition (not necessarily Dyck).

The depth of $\lambda \backslash \mu$ is defined inductively by

$$
\operatorname{dp}(\lambda \backslash \mu)= \begin{cases}0, & \text { if } \lambda=\mu \\ c(\theta)+\operatorname{dp}((\lambda \backslash \mu) \backslash \theta), & \text { otherwise }\end{cases}
$$

where θ is the outer border strip of $\lambda \backslash \mu$ and

$$
c(\theta)=\# \text { connected components of } \theta
$$

Example. Dyck skew partition:

2. Parabolic Kazhdan-Lusztig polynomials

Theorem. (Deodhar, 1987) Let (W, S) be any Coxeter system and let $J \subseteq S$. Then, there is a unique family of polynomials

$$
\left\{P_{u, v}^{J}(q)\right\}_{u, v \in W^{J}} \subseteq \mathbf{Z}[q]
$$

such that, for all $u, v \in W^{J}$, with $u \leqslant v$, and fixed $s \in D(v)$, one has

$$
P_{u, v}^{J}(q)=\widetilde{P}(q)-\sum_{\{u \leqslant w \leqslant v s: w s<w\}} \mu(w, v s) q^{\frac{\ell(w, v)}{2}} P_{u, w}^{J}(q),
$$

where

$$
\tilde{P}(q)= \begin{cases}P_{u s, v s}^{J}(q)+q P_{u, v s}^{J}(q), & \text { if } u s<u \\ q P_{u s, v s}^{J}(q)+P_{u, v s}^{J}(q), & \text { if } u<u s \in W^{J} \\ 0, & \text { if } u<u s \notin W^{J}\end{cases}
$$

and

$$
\mu(u, v)=\left[q^{\frac{\ell(u, v)-1}{2}}\right]\left(P_{u, v}^{J}\right)
$$

The $P_{u, v}^{J}(q)$ are the parabolic Kazhdan-Lusztig polynomials of W^{J}.

For $J=\emptyset$, we get the (ordinary) Kazhdan-Lusztig polynomials of W :

$$
P_{u, v}(q)=P_{u, v}^{\emptyset}(q)
$$

Conversely, parabolic Kazhdan-Lusztig polynomials can be expressed in terms their ordinary counterparts.

Proposition. Let $J \subseteq S$, and $u, v \in W^{J}$. Then

$$
P_{u, v}^{J}(q)=\sum_{w \in W_{J}}(-1)^{\ell(w)} P_{w u, v}(q)
$$

The previous result has two interesting consequences.

Corollary. Let $I \subseteq J \subseteq S$, and $u, v \in W^{J}$. Then

$$
P_{u, v}^{J}(q)=\sum_{w \in\left(W_{J}\right)^{I}}(-1)^{\ell(w)} P_{w u, v}^{I}(q)
$$

Therefore, knowledge of the parabolic Kazhdan-Lusztig polynomials for a given $I \subseteq S$ implies knowledge of them for any J containing I.

Corollary. Let $J \subseteq S$, and $u, v \in W^{J}$. Then

$$
\left[q^{\frac{\ell(u, v)-1}{2}}\right]\left(P_{u, v}(q)\right)=\left[q^{\frac{\ell(u, v)-1}{2}}\right]\left(P_{u, v}^{J}(q)\right) .
$$

Therefore knowledge of the parabolic Kazhdan-Lusztig polynomials for a given $J \subseteq S$ implies knowledge of the maximum-degree coefficient of the ordinary Kazhdan-Lusztig polynomials for all elements of W^{J}.

These are the coefficients that are of interest in the construction of the Kazhdan-Lusztig cells and representations.

Besides their connections with Kazhdan-Lusztig polynomials (which have applications in several areas of mathematics, including geometry of Schubert varieties and representation theory), the parabolic ones also play a direct role in the following areas:

- generalized Verma modules
- tilting modules
- quantized Schur algebras
- representation theory of the Lie algebra $\mathfrak{g l}_{n}$
- Macdonald polynomials
- partial flag varieties.
- L. Casian, D. Collingwood, The Kazhdan-Lusztig conjecture for generalized Verma modules, Math. Zeit. 195 (1987), 581-600.
- W. Soergel, Kazhdan-Lusztig polynomials and a combinatoric for tilting modules, Represent. Theory 1 (1997), 83-114.
- W. Soergel, Character formulas for tilting modules over Kac-Moody algebras, Represent. Theory 1 (1997), 115-132.
- M. Varagnolo, E. Vasserot, On the decomposition matrices of the quantized Schur algebra, Duke Math. J. 100 (1999), 267-297.
- B. Leclerc, J.-Y. Thibon, Littlewood-Richard-son coefficients and KazhdanLusztig polynomials, Adv. Studies Pure Math. 28 (2000), 155-220.
- J. Haglund, M. Haiman, N. Loehr, A combinatorial formula for Macdonald polynomials, J. Amer. Math. Soc. 18 (2005), 735-761.
- J. Haglund, M. Haiman, N. Loehr, J. Remmel, A. Ulyanov, A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J. 126 (2005), 195-232.
- M. Kashiwara, T. Tanisaki, Parabolic Kazhdan-Lusztig polynomials and Schubert varieties, J. Algebra 249 (2002), 306-325.

In [Pacific Journal of Mathematics 207 (2002), 257-286], Brenti found a closed formula for the parabolic Kazhdan-Lusztig polynomials for the maximal quotients of the symmetric group.

Theorem. (Brenti, 2002) Let $u, v \in S_{n}^{[n-1] \backslash\{i\}}$, with

$$
\wedge(v)=\lambda \quad \text { and } \quad \wedge(u)=\mu
$$

Then

$$
P_{u, v}^{J}(q)= \begin{cases}q^{\frac{|\lambda \backslash \mu|-\operatorname{dp}(\lambda \backslash \mu)}{2},} & \text { if } \lambda \backslash \mu \text { is Dyck } \\ 0, & \text { otherwise }\end{cases}
$$

In this talk we generalize this result to the quasi-minuscule quotients.

3. Quasi-minuscule quotiens

We will now give a combinatorial description of the quasi-minuscule quotients in S_{n}. We start with the following simple observation.

A permutation $v \in S_{n}$ belongs to $S_{n}^{[n-1] \backslash\{i-1, i\}}$ if and only if

$$
v^{-1}(1)<\cdots<v^{-1}(i-1) \quad \text { and } \quad v^{-1}(i)<\cdots<v^{-1}(n)
$$

Example. $v=61523748 \in S_{8}^{[7] \backslash\{4,5\}}$.

Let $\lambda \subseteq\left(n^{m}\right)$ be a partition and let

$$
\operatorname{path}(\lambda)=x_{1} \ldots x_{n+m}, \quad x_{k} \in\{\mathrm{U}, \mathrm{D}\} .
$$

We say that an index $k \in[n+m-1]$ is a

$$
\begin{cases}\text { valley of } \lambda, & \text { if }\left(x_{k}, x_{k+1}\right)=(\mathrm{D}, \mathrm{U}), \\ \text { peak of } \lambda, & \text { if }\left(x_{k}, x_{k+1}\right)=(\mathrm{U}, \mathrm{D}) .\end{cases}
$$

Definition. A rooted partition is a pair (λ, r), where λ is a partition with at least one valley and r is one of its valleys.

We think of a rooted partition as a lattice path with a ball in one of its valleys. If $\lambda \subseteq\left(n^{m}\right)$ and $\operatorname{path}(\lambda)=x_{1} \ldots, x_{n+m}$, then we set

$$
\operatorname{path}(\lambda, r)=x_{1} \ldots x_{r} \bullet x_{r+1} \ldots x_{n+m}
$$

Example. $\lambda=(3,2,2,1,1) \subseteq\left(4^{5}\right)$ and $r=3$.

Let $v \in S_{n}^{[n-1] \backslash\{i-1, i\}}$. The partition associated with v, denoted by $\Lambda(v)$, is the non-increasing rearrangement of the inversion table of v.

Example. $v=61523748 \in S_{8}^{[7] \backslash\{4,5\}}$. Then

Remark. $\quad \wedge(v) \subseteq\left((n-i+1)^{i}\right)$ and $v^{-1}(i)$ is a valley of $\wedge(v)$.

Proposition. The map $v \mapsto\left(\wedge(v), v^{-1}(i)\right)$ is a bijection

$$
S_{n}^{[n-1] \backslash\{i-1, i\}} \longleftrightarrow \quad\left\{\text { rooted partitions } \subseteq\left((n-i+1)^{i}\right)\right\}
$$

Furthermore, $\ell(v)=|\wedge(v)|$.

The rooted partition associated with v is

$$
\Lambda^{\bullet}(v)=\left(\wedge(v), v^{-1}(i)\right)
$$

Example. $v=61523748 \in S_{8}^{[7] \backslash\{4,5\}}$. Then

$$
\Lambda^{\bullet}(v)=((3,2,2,1,1), 3)=
$$

The rooted partition $\Lambda^{\bullet}(v)$ can be constructed directly from v. Proposition. Let $v \in S_{n}^{[n-1] \backslash\{i-1, i\}}$. Then

$$
\operatorname{path}\left(\wedge^{\bullet}(v)\right)=x_{1} x_{2} \ldots x_{n},
$$

where

$$
x_{k}= \begin{cases}\mathrm{D}, & \text { if } v(k)<i, \\ \mathrm{D} \bullet \mathrm{U}, & \text { if } v(k)=i, \\ \mathrm{U}, & \text { if } v(k)>i\end{cases}
$$

Example. $v=61523748 \in S_{8}^{[7] \backslash\{4,5\}}$.

$$
\begin{gathered}
\uparrow \\
v^{-1}(i)=3
\end{gathered}
$$

Let λ be a partition. If x is a peak or a valley of λ, we denote by \hat{x} the cell immediately below x or above x, respectively. Then we set

$$
\lambda^{x}= \begin{cases}\lambda \backslash\{\hat{x}\}, & \text { if } x \text { is a peak of } \lambda, \\ \lambda \cup\{\hat{x}\}, & \text { if } x \text { is a valley of } \lambda .\end{cases}
$$

The operator $(\cdot)^{x}$ is clearly an involution.

We now give a description of the Bruhat order on $S_{n}^{[n-1] \backslash\{i-1, i\}}$ in terms of rooted partitions, showing that, basically, the behaviour of the root is that of a ball subject to gravity.

Let (λ, r) be a rooted partition and let x be a valley of λ, such that λ^{x} has at least one valley. We say that $\left(\lambda^{\prime}, r^{\prime}\right)$ is obtained from (λ, r) by an elementary move if $\lambda^{\prime}=\lambda^{x}$ and

$$
r^{\prime}= \begin{cases}r, & \text { if } x \neq r \\ \text { one of the valleys around its peak } x, & \text { if } x=r\end{cases}
$$

Proposition. Let $u, v \in S_{n}^{[n-1] \backslash\{i-1, i\}}$, with

$$
\Lambda^{\bullet}(v)=(\lambda, r) \quad \text { and } \quad \Lambda^{\bullet}(u)=(\mu, t)
$$

Then v covers u (in the Bruhat order) if and only if (λ, r) is obtained from (μ, t) by an elementary move.

Example. $v=61523748 \in S_{8}^{[7] \backslash\{4,5\}}$.

$\operatorname{valleys}\left(\wedge^{\bullet}(v)\right)=\{3,6,8\}$.

Thus, there are four $w \in S_{8}^{[7] \backslash\{4,5\}}$ that cover v, obtained as follows:

The characterization of the covering relation implies the following.

Proposition. There is a bijection
rooted partitions \longleftrightarrow covering relations in Young's lattice.

Proposition. Let $u, v \in S_{n}^{[n-1] \backslash\{i-1, i\}}$. Then

$$
u \leqslant v \quad \Longrightarrow \quad \wedge(u) \subseteq \wedge(v)
$$

Note that the converse of the last assertion is not true in general.
Example. $u=16273548, v=61523748 \in S_{8}^{[7] \backslash\{4,5\}}$.

$$
\wedge(u)=(3,2,2,1,0) \subseteq(3,2,2,1,1)=\wedge(v), \quad \text { but } u \nless v
$$

4. •-Dyck partitions

This is the main new combinatorial concept arising from this work.
If (λ, r) and (μ, t) are two rooted partitions such that $\mu \subseteq \lambda$, then we call $(\lambda, r) \backslash(\mu, t)$ a skew rooted partition.

Definition. A skew rooted partition $(\lambda, r) \backslash(\mu, t)$ is •-Dyck if
(1) there are no peaks of λ strictly between the two roots,
(2) at least one of $\lambda \backslash \mu$ and $\lambda \backslash \mu^{t}$ is Dyck.

Let $(\lambda, r) \backslash(\mu, t)$ be - -Dyck. The depth of $(\lambda, r) \backslash(\mu, t)$ is

$$
\operatorname{dp}((\lambda, r) \backslash(\mu, t))= \begin{cases}\operatorname{dp}(\lambda \backslash \mu), & \text { if } \lambda \backslash \mu \text { is Dyck } \\ \operatorname{dp}\left(\lambda \backslash \mu^{t}\right)+1, & \text { if } \lambda \backslash \mu^{t} \text { is Dyck }\end{cases}
$$

Proposition. Let $\lambda \backslash \mu$ be skew partition and let t be a valley of μ. Suppose that at least one of $\lambda \backslash \mu$ and $\lambda \backslash \mu^{t}$ is Dyck. Then $\lambda \backslash \mu$ and $\lambda \backslash \mu^{t}$ are both Dyck if and only if t is a peak of λ. In this case,

$$
\operatorname{dp}(\lambda \backslash \mu)=\operatorname{dp}\left(\lambda \backslash \mu^{t}\right)+1
$$

Four •-Dyck skew rooted partitions:

For all of them,

$$
|\lambda \backslash \mu|=98 \quad \text { and } \quad \operatorname{dp}((\lambda, r) \backslash(\mu, t))=8
$$

5. Main result

Theorem. (Brenti, I., Marietti, 2008) Let $u, v \in S_{n}^{[n-1] \backslash\{i-1, i\}}$, with

$$
\Lambda^{\bullet}(v)=(\lambda, r) \quad \text { and } \quad \Lambda^{\bullet}(u)=(\mu, t)
$$

Then

$$
P_{u, v}^{J}(q)= \begin{cases}q^{\frac{|\lambda \backslash \mu|-\operatorname{dp}((\lambda, r) \backslash(\mu, t))}{2},} & \text { if }(\lambda, r) \backslash(\mu, t) \text { is } \bullet \text {-Dyck } \\ 0, & \text { otherwise } .\end{cases}
$$

Example. If $(\lambda, r) \backslash(\mu, t)$ is one of the previous four, then

$$
P_{u, v}^{J}(q)=q^{\frac{98-8}{2}}=q^{45} .
$$

Corollary. Let $u, v \in S_{n}^{[n-1] \backslash\{i-1, i\}}$, with

$$
\Lambda^{\bullet}(v)=(\lambda, r) \quad \text { and } \quad \Lambda^{\bullet}(u)=(\mu, t)
$$

Then

$$
\mu(u, v)=\left\{\begin{aligned}
1, & \text { if } \lambda \backslash \mu \text { is a Dyck cbs and there are } \\
& \text { no peaks of } \lambda \text { strictly between } r \text { and } t \\
0, & \text { otherwise. }
\end{aligned}\right.
$$

Example. $\mu(u, v)=1$ if $(\lambda, r) \backslash(\mu, t)$ is, for instance,

or

Our main result implies the analog result for maximal quotients.
Corollary. (Brenti, 2002) Let $u, v \in S_{n}^{[n-1] \backslash\{i\}}$, with

$$
\wedge(v)=\lambda \quad \text { and } \quad \wedge(u)=\mu .
$$

Then

$$
P_{u, v}^{J}(q)= \begin{cases}q^{\frac{|\lambda| \mu \mid-\operatorname{dp}(\lambda \backslash \mu)}{2},} & \text { if } \lambda \backslash \mu \text { is Dyck }, \\ 0, & \text { otherwise. }\end{cases}
$$

We now consider the quasi-minuscule quotient $S_{n}^{[n-1] \backslash\{1, n-1\}}$. A permutation $v \in S_{n}$ belongs to $S_{n}^{[n-1] \backslash\{1, n-1\}}$ if and only if

$$
v^{-1}(2)<v^{-1}(3)<\cdots<v^{-1}(n-1)
$$

Given $v \in S_{n}^{[n-1] \backslash\{i\}}$, we let

$$
\Lambda_{0}(v)=\left(v^{-1}(1), v^{-1}(n)\right)
$$

Example. $v=23485617 \in S_{8}^{[7] \backslash\{1,7\}}$.

$$
\Lambda_{0}(v)=(7,3)
$$

Proposition. The map $v \mapsto \Lambda_{0}(v)$ is a bijection

$$
S_{n}^{[n-1] \backslash\{i\}} \quad \longleftrightarrow \quad\left\{(a, b) \in[n]^{2}: a \neq b\right\}
$$

Furthermore, if $\Lambda_{0}(u)=(a, b)$ and $\Lambda_{0}(v)=(c, d)$, then

$$
u \leqslant v \quad \Longleftrightarrow \quad a \leqslant c \text { and } b \geqslant d
$$

Theorem. (Brenti, I., Marietti, 2008) Let $u, v \in S_{n}^{[n-1] \backslash\{i\}}$, with

$$
\Lambda_{0}(v)=(a, b) \quad \text { and } \quad \Lambda_{0}(u)=(c, d)
$$

Then

$$
P_{u, v}^{J}(q)= \begin{cases}q^{c-d-2}, & \text { if } a-1 \leqslant d \leqslant a \leqslant b \leqslant c \leqslant b+1 \\ 0, & \text { otherwise }\end{cases}
$$

6. Open problems

In [M. Kashiwara, T. Tanisaki, J. Algebra, 249 (2002), 306-325] a geometric interpretation of the parabolic Kazhdan-Lusztig polynomials for Weyl groups was given in terms of intersection homology.

In view of this, the following problem is natural.

Open problem. Find a geometric proof of our main theorem.

A geometric proof for the case of maximal quotients has been recently found in [N. Perrin, Compositio Math., 143 (2007), 1255-1312].

The following non-negativity conjecture is well known.

Conjecture. (Kazhdan-Lusztig, 1979) Let W be any Coxeter group and $u, v \in W$. Then $P_{u, v}(q)$ has non-negative coefficients.

It is widely believed (although not stated anywhere in the literature) that the same non-negativity property holds for the parabolic KazhdanLusztig polynomials.

Conjecture. Let (W, S) be any Coxeter system, $J \subseteq S$ and $u, v \in W^{J}$. Then $P_{u, v}^{J}(q)$ has non-negative coefficients.

It is true for Weyl groups by the above geometric interpretation.

The following is a recent conjecture by Brenti.

Conjecture. (Brenti, 2008) Let (W, S) be any Coxeter system and

$$
I \subseteq J \subseteq S
$$

Then, for all $u, v \in W^{J}$,

$$
P_{u, v}^{I}(q) \geqslant P_{u, v}^{J}(q)
$$

(coefficientwise).

7. Enumerative results

7.1 Enumeration of Dyck partitions

Let $\lambda \subseteq\left(n^{m}\right)$ be a partition and consider the associated path

$$
\operatorname{path}(\lambda)=x_{1} \ldots x_{n+m}, \quad x_{k} \in\{\mathrm{U}, \mathrm{D}\}
$$

We make the substitution

$D \longleftrightarrow)$.
We define the matching set and the matching number of λ by

$$
\begin{aligned}
M(\lambda) & =\left\{k \in[n+m]: \text { parenthesis } x_{k} \text { is matched }\right\} \\
\operatorname{mtc}(\lambda) & =\frac{|M(\lambda)|}{2}=\# \text { pairs of matched parentheses in path }(\lambda)
\end{aligned}
$$

Example. $\lambda=(4,3,3,2,2,2) \subseteq\left(5^{6}\right)$.

$$
\operatorname{path}(\lambda)=(\underline{(}) \underline{\underline{x}}) \underline{(\underline{)})(\underline{(})(~}
$$

$$
\begin{aligned}
M(\lambda) & =\{1,2,3,4,6,7,10,11\} \\
\operatorname{mtc}(\lambda) & =4
\end{aligned}
$$

In 2002, Brenti enumerated the partitions μ contained in a given partition λ such that $\lambda \backslash \mu$ is Dyck and found a q-analog formula.

This is a reformulation of his result.

Theorem. (Brenti, 2002) Let $\lambda \subseteq\left(n^{m}\right)$. Then

$$
\mid\{\mu \subseteq \lambda: \lambda \backslash \mu \text { is Dyck }\}=2^{\operatorname{mtc}(\lambda)}
$$

More generally, the following q-analog holds:

$$
\sum_{\substack{\mu \subseteq \lambda \\ \lambda \backslash \mu \text { is Dyck }}} q^{\mathrm{dp}(\lambda \backslash \mu)}=(q+1)^{\mathrm{mtc}(\lambda)} .
$$

Recently, all the Dyck skew partition contained in a given rectangle have been enumerated and a q-analog has been found.

Theorem. (I., August 2008)

$$
\left|\left\{\lambda \backslash \mu \subseteq\left(n^{m}\right) \mathrm{Dyck}\right\}\right|=\sum_{k=0}^{\min \{n, m\}} \frac{n+m-2 k+1}{n+m-k+1}\binom{n+m}{k} 2^{k}
$$

More generally, the following q-analog holds:

$$
\sum_{\lambda \backslash \mu \subseteq\left(n^{m}\right)} q^{\mathrm{dp}(\lambda \backslash \mu)}=\sum_{k=0}^{\min \{n, m\}} \frac{n+m-2 k+1}{n+m-k+1}\binom{n+m}{k}(q+1)^{k} .
$$

$$
\lambda \backslash \mu \text { is Dyck }
$$

We have the following equivalent formulas.

Theorem. (I., August 2008)

$$
\begin{aligned}
& \left|\left\{\lambda \backslash \mu \subseteq\left(n^{m}\right) \mathrm{Dyck}\right\}\right|=\binom{n+m}{n} 2^{\min \{n, m\}+1}-\sum_{k=0}^{\min \{n, m\}}\binom{n+m}{k} 2^{k} . \\
& \sum_{\substack{\lambda \backslash \mu \subseteq\left(n^{m}\right)}} q^{\operatorname{dp}(\lambda \backslash \mu)} \\
& \begin{aligned}
\lambda \backslash \mu \text { is Dyck } & =\binom{n+m}{n}(q+1)^{\min \{n, m\}+1}-\sum_{k=0}^{\min \{n, m\}}\binom{n+m}{k}(q+1)^{k} \\
& =\binom{n+m}{n}(q+1)^{\min \{n, m\}+1}-L_{\min \{n, m\}}\left((q+2)^{n+m}\right) .
\end{aligned}
\end{aligned}
$$

Where L_{h} is the truncating operator: $L_{h}\left(\sum_{k=0}^{n} a_{k} q^{k}\right)=\sum_{k=0}^{h} a_{k} q^{k}$.

7.2 Connection with paths on regular trees

For any integer $d \geqslant 2$, we denote by T_{d} the d-regular tree, that is the (infinite) tree where all the vertices have degree d.

Given two vertices x and y in a graph G, we denote by Paths $_{G, \ell}(x, y)$ the set of all paths in G of length ℓ from x to y.

Theorem. (I., August 2008) Let $n, m \in \mathbf{P}$.
Let x, y be two vertices of T_{3} at distance $|n-m|$. Then

$$
\mid\left\{\lambda \backslash \mu \subseteq\left(n^{m}\right): \lambda \backslash \mu \text { is Dyck }\right\}|=| \text { Paths }_{T_{3}, n+m}(x, y) \mid
$$

More generally, we have the following q-analog.
Let $q \in \mathbf{Z}_{\geqslant 0}$ and x, y be two vertices of T_{q+2} at distance $|n-m|$. Then

$$
\sum_{\substack{\lambda \backslash \mu \subseteq\left(n^{m}\right) \\ \lambda \backslash \mu \text { is Dyck }}} q^{\mathrm{dp}(\lambda \backslash \mu)}=\mid \text { Paths }_{T_{q+2}, n+m}(x, y) \mid .
$$

For both results we gave combinatorial bijective proofs.

7.3 Enumeration of •-Dyck partitions

Let (λ, r) be a rooted partition contained in $\left(n^{m}\right)$, with

$$
\operatorname{path}(\lambda, r)=x_{1} \ldots x_{r} \bullet x_{r+1} \ldots x_{n+m}, \quad x_{k} \in\{\mathrm{D}, \mathrm{U}\} .
$$

Let p and q, with p minimal and q maximal, be such that

$$
x_{p} \ldots x_{r} \bullet x_{r+1} \ldots x_{q}=\mathrm{DD} \ldots \mathrm{D} \bullet \cup \cup \ldots \cup .
$$

In other words, $p-1$ is the first peak to the left of r (unless $p=1$) and q is the first peak to the right of r (unless $q=n+m$).

Example. $\lambda=(3,3,1,1,1) \subseteq\left(4^{5}\right)$ and $r=4$.

Theorem. (I., August 2008) Let (λ, r) be a rooted partition and let p and q be as above. Then

$$
\mid\{(\mu, t):(\lambda, r) \backslash(\mu, t) \text { is } \bullet-\text { Dyck }\} \mid=2^{a-1}\left(b+2^{c}-d\right)
$$

where a, b, c, d only depend on λ, namely

$$
\begin{aligned}
a & =\operatorname{mtc}(\lambda), \\
b & =|M(\lambda) \cap[p, q]|, \\
c & =|M(\lambda) \cap\{r, r+1\}|, \\
d & =|M(\lambda) \cap\{p, q\}| .
\end{aligned}
$$

Example. $\lambda=(3,3,1,1,1) \subseteq\left(4^{5}\right)$ and $r=4$.

$$
p=2 \quad r=4 \quad q=6
$$

$$
\begin{aligned}
a & =\operatorname{mtc}(\lambda)=3 \\
b & =|M(\lambda) \cap[p, q]|=3 \\
c & =|M(\lambda) \cap\{r, r+1\}|=1 \\
d & =|M(\lambda) \cap\{p, q\}|=2
\end{aligned}
$$

$$
\mid\{(\mu, t):(\lambda, r) \backslash(\mu, t) \text { is } \bullet \text {-Dyck }\} \mid=2^{3-1}\left(3+2^{1}-2\right)=12
$$

Example. $\lambda=(3,2,1) \subseteq\left(3^{3}\right)$ and $r=2$. Similarly,

$$
\mid\{(\mu, t):(\lambda, r) \backslash(\mu, t) \text { is } \bullet \text {-Dyck }\} \mid=12 .
$$

ありがとうございました
Thank you very much！

