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1. Background

1.1 Coxeter groups

W . Coxeter group S : set of generators
Set of reflections of W: T = {vsv™1:veW, seS}.

Let v € W. The length of v is

¢(v) = min{k : v is a product of k generators}.

The (right) descent set of v is
D) ={s€ S :4(vs) <£(v)}.
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Bruhat graph of W: directed graph with W as vertex set and

u—v & uwltveT and L(u) < £(v).

Bruhat order of W: partial order on W defined by

U U == U=ug— Ul — - — UL = .

W, with the Bruhat order, is a graded poset with rank function ¢.

For w,v € W, with u < v, we set

l(u,v) = €(v) —¢(u) (distance in the Bruhat order).
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Let J C S be a fixed subset of generators.
The parabolic subgroup of W generated by J is
Wi = (J).

The quotient of W by J is

WY ={veW: e(sv) > L) for all s € J}.

We will consider particular quotients of the symmetric group.
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1.2 The symmetric group

P={1,2,3,...}, [n] ={1,2,...,n} (neP),

Symmetric group: Sp, = {v: [n] — [n] bijection}.

We denote v € S, by the word v(1)v(2)...v(n) and by its diagram.

Example. v = 61523748 € Sg has diagram
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Sn, 1S a Coxeter group, with generators the simple transpositions:

S ={(1,2),(2,3),...,(n—1,n)}.

When we refer to these generators, the transposition (¢,7+ 1) is simply
denoted by . With this convention, the set of generators of S,, is

S =[n—1].

The reflections are all the transpositions:

T ={(i,5) € [n]? i< j}.
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Let v e S,. The length of v is the number of its inversions:

L(v) = [{(,5) € [n]? 1 < § and v(i) > v(j)}|.

The descent set of v is

Dw)=H{ie[n—1] :v(E) >v(@E + 1)}.

Let J C [n— 1]. The quotient of S, by J is

(Sp)’ = {v e Sy : v ) < v i(r 4+ 1) for all r € J}.
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The maximal quotients of S;, are obtained by taking

J=[n—-1]\{i} (@(Ge[n-—1]).

The quasi-minuscule quotients of S, are obtained by taking
J=[n-1\{i-1,i} (2<i<n-1)
or

J=[n—1]\{1,n—1}.

In this talk we study the quasi-minuscule quotiens of Sj,.
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1.3 Partitions and lattice paths

We identify a partition A = (A1,...,Ar) C (n™) with its diagram:
{(i,j)eP?:1<i<kand 1<j<)\}

Example. )\ = (3,2,2,1,1) C (4>).

English French Our notation
notation notation (Japanese?)
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Given a partition A C (n™), the path associated with X is the lattice
path from (0,m) to (n+m,n), with steps (1,1) (up steps) and (1,—1)
(down steps) which is the upper border of the diagram of A:

path(\) = zq1z>... Tpn+ms with =, € {U,D},
Note that path()\) has exactly n U's and m D’s.

Example. ) = (3,2,2,1,1) C (49).

ath(\) = ¢
P () = uUDDuUDDUDU
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We denote the set of all integer partitions by P. It is well known that
P, partially ordered by set inclusion, is a lattice (the Young lattice).

Sublattice

/
of all partitions @

AC(3,2,1): <®><
\

4

v
\§
¢~
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Let A\, u € P, with pw C A. Then we call A\ u a skew partition.

A skew partition is a border strip (also called a ribbon) if it contains
no 2 x 2 square of cells. For brevity, we call a connected (by which we
mean “rookwise connected” ) border strip a cbs.

The outer border strip 8 of A\ u is the set of cells of A\ p such that
the cell directly above it is not in A\ u.

skew outer
partition border strip
A\ p of A\ u




11/50

A cbs 6 C P2 is called a Dyck cbs if it is a “Dyck path’, which means
that no cell of 8 has level strictly less than that of either the leftmost
or the rightmost of its cells. (In particular, in a Dyck cbs the leftmost
and rightmost cells have the same level.)

Dyck non-Dyck non-Dyck
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Let A\ u C P2 be a skew partition.

Recall that A\ u is defined to be Dyck in the following inductive way:
(1) the empty partition is Dyck,

(2) if A\ pu is connected, then A\ u is Dyck if and only if
(a) its outer border strip 6 is a Dyck cbs,

(b) (A\ w) \ @ is Dyck,

(3) if A\ pn is not connected, then A\ u is Dyck if and only if all of its
connected components are Dyck.
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Let A\ u C P2 be a skew partition (not necessarily Dyck).

The depth of A\ p is defined inductively by

0, if A= pu,

P\ W) = {cw) +dp((\\ 1)\ 6), otherwise,

where 6 is the outer border strip of A\ p and

c(0) = # connected components of 6.
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Example. Dyck skew partition:

GRS
AP 2, .
e .Y e
29 %% S %S
d%’é%’é’é“%’é%qb
0’ %8 O

%
C PRSI
REZZIRRRRIIRRARR

dp(A\ p) =8.
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2. Parabolic Kazhdan-Lusztig polynomials

Theorem. (Deodhar, 1987) Let (W,S) be any Coxeter system and
let J CS. Then, there is a unique family of polynomials

{P (@)} pew C Zld]

such that, for all u,v € WY, with « < v, and fixed s € D(v), one has

B L(w,v)
{uw<vsiws<w}
where o . |
- Pu&vs(g) + un,vs(Q)y if us < u,
P(q) =« qPiL]s,vs(Q) + Ptivs(Q) ifu<usé€e W‘],
\O’ |f’U/<’U,S€W‘]
and

w(u,w) = [ 2 [(PY).
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The P ,(q) are the parabolic Kazhdan-Lusztig polynomials of W+.
For J = 0, we get the (ordinary) Kazhdan-Lusztig polynomials of W:

Pun(q) = Pg,v(q).

Conversely, parabolic Kazhdan-Lusztig polynomials can be expressed
in terms their ordinary counterparts.

Proposition. Let JC S, and u,v € WY, Then

Pl@) = Y (—1)" ) Py ().

weW;

The previous result has two interesting consequences.
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Corollary. Let ICJCS, and uw,v € W7. Then

PfL{,v(Q) — Z (_1)£(w)P'L{)u,v(Q)°
’UJE(WJ)I

T herefore, knowledge of the parabolic Kazhdan-Lusztig polynomials
for a given I C S implies knowledge of them for any J containing I.

Corollary. Let JC S, and u,v € WY/, Then

T (Pl = g2 (P ().

T herefore knowledge of the parabolic Kazhdan-Lusztig polynomials for
a given J C S implies knowledge of the maximum-degree coefficient
of the ordinary Kazhdan-Lusztig polynomials for all elements of w.

These are the coefficients that are of interest in the construction of
the Kazhdan-Lusztig cells and representations.
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Besides their connections with Kazhdan-Lusztig polynomials (which
have applications in several areas of mathematics, including geometry
of Schubert varieties and representation theory), the parabolic ones
also play a direct role in the following areas:

e generalized Verma modules

e tilting modules

e quantized Schur algebras

e representation theory of the Lie algebra gl,
e Macdonald polynomials

e partial flag varieties.
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In [Pacific Journal of Mathematics 207 (2002), 257—286], Brenti
found a closed formula for the parabolic Kazhdan-Lusztig polynomials
for the maximal quotients of the symmetric group.

Theorem. (Brenti, 2002) Let u,v e S M with

A(v) =X and A(u) = pu.

Then
(Mp[=dp(W\pw) _
; q 2 , 1T X\ p is Dyck,
Py () =

0, otherwise.

In this talk we generalize this result to the quasi-minuscule quotients.
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3. Quasi-minuscule quotiens

We will nhow give a combinatorial description of the quasi-minuscule
quotients in S;. We start with the following simple observation.

A permutation v € S, belongs to ST[L"_l]\{i_l’i} if and only if

v (D) <o <v G —1) and vlG) < <o i(n).

Example. v = 61523748 ¢ 55/ \1*>),
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Let A C (n"™) be a partition and let
path(A\) =x1...24m, =z € {U,D}.
We say that an index k€ [n+m — 1] is a

valley of X, if (xkaxk—l—l) = (D, U),
peak of A, if (:I:k,:ck_|_1) = (U, D)

Definition. A rooted partition is a pair (\,r), where X\ is a partition
with at least one valley and r is one of its valleys.

We think of a rooted partition as a lattice path with a ball in one of
its valleys. If A C (n™) and path(\) =1 ...,%,4,,, then we set

path(\,7) =21 ... 2r @241 ... Tt
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Example. )\ =(3,2,2,1,1) C (4°) and r = 3.

(A, r) =

Path(A,r) = N8 — UDD e UDDUDU
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Let v € Skn_l]\{i_l’i}. The partition associated with v, denoted by
A(v), is the non-increasing rearrangement of the inversion table of v.

Example. v = 61523748 € S5 \*%) Then

ANw) =(3,2,2,1,1) =

Remark. A(v) C ((n—i4 1)") and v—1(4) is a valley of A(v).
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Proposition. The map v +— (A(v),v 1(i)) is a bijection

po L frooted partitions € ((n —i 4 1))},
Furthermore, £(v) = |A(v))|.

The rooted partition associated with v is

A*(v) = (A(v), v (4)).

Example. v = 61523748 € S51\*5) Then

A*(v) =((3,2,2,1,1),3) =




24 /50

The rooted partition A®(v) can be constructed directly from w.

Proposition. Let v & S%”_l]\{i_l’i}. Then

path(A*(v)) = z125 ... xn,

where

/

D, if v(k) <1,
=<« DeU, ifu(k)=1,
U, if v(k) > 1.

\
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Example. v = 61523748 € 55/ 1\14°), o
o
o
S
v = o
[
o
o
:

v (i) =3

path(\,r) = £ \@
. = U D DeU D DU DU
N——

Tr1 X2 r3 T4 Ts Te L7 I8
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Let A\ be a partition. If x is a peak or a valley of A\, we denote by
the cell immediately below x or above z, respectively. Then we set

A\ {z}, if z is a peak of A,

AUA{z}, if z is a valley of .

r

)\:13

4)

,\
5
|

The operator (-)% is clearly an involution.
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We now give a description of the Bruhat order on 57[{1_1]\{7;_1’7;} in

terms of rooted partitions, showing that, basically, the behaviour of
the root is that of a ball subject to gravity.

Let (A\,7) be a rooted partition and let x be a valley of A, such that

A? has at least one valley. We say that ()\,7/) is obtained from (\,r)
by an elementary move if X' = M\* and

, {r, if © £,
T =

one of the valleys around its peak =, if x = r.
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Proposition. Let u,v ¢ s V=Lt iy

AN(v) = (\r) and A%(uw) = (u,t).

Then v covers u (in the Bruhat order) if and only if (\,r) is obtained
from (u,t) by an elementary move.

Example. v = 61523748 ¢ Sg]\{4’5}.

N (v) = valleys(A®(v)) = {3, 6, 8}.
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Thus, there are four w & SE[37]\{4’5} that cover v, obtained as follows:

v v v W

A®(v) A®(w) A®(v) A®(w)

v v v W

A®(v) A®(w) A®(v) A®(w)
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T he characterization of the covering relation implies the following.

Proposition. There is a bijection

rooted partitions <+—  covering relations in Young's lattice.

Proposition. Let u,v € ST[Ln_l]\{i_l’i}. Then
u<v == A(u) CA(v).
Note that the converse of the last assertion is not true in general.

Example. u = 16273548, v = 61523748 € SL1\*5),

ANu) =(3,2,2,1,0) € (3,2,2,1,1) = A(v), but ugw.
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4. «-Dyck partitions

This is the main new combinatorial concept arising from this work.

If (A\,r) and (u,t) are two rooted partitions such that u C A, then we
call (A\,r)\ (u,t) @ skew rooted partition.
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Definition. A skew rooted partition (A, r) \ (u,t) is e -Dyck if
(1) there are no peaks of X strictly between the two roots,

(2) at least one of A\ p and X\ u! is Dyck.

Let (\,r)\ (u,t) be e-Dyck. The depth of (\,r)\ (u,t) is

~[dp(A\ W), if A\ u is Dyck,
dp((A, )\ (i, 1)) = {dp(A\ut) + 1, if A\ ! is Dyck,

Proposition. Let A\ p be skew partition and let ¢t be a valley of u.
Suppose that at least one of A\ p and X\ p! is Dyck. Then X\ u and
A\ut are both Dyck if and only if t is a peak of A. In this case,

dp(A\ ) = dp(A\ ph) + 1.
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Four e-Dyck skew rooted partitions:

CRLKES
ey .%o
N M P O
2 0 e M RS
By G INKANARE AR INKS
Fetefelete %% % % % % % % % % % CRKKKKKK

For all of them,

A\ul =98 and dp((A\,)\ (1) =8.
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5. Main result

Theorem. (Brenti, I, Marietti, 2008) Let u,v ¢ s =L \ith
AN (v) = (N, r) and A*(u) = (u,t).
Then

g () \ (1) is e -Dyck,

0, otherwise.

P’L{,’U(Q) — {

Example. If (\,7)\ (u,t) is one of the previous four, then

98-8
299 4



Corollary. Let u,v € Sf,[ln_l]\{i_l’i}, with

Then

w(u,v) = 4

N(v) =(\,7) and A®(u) = (u,t).

/

1, if A\ p is a Dyck cbs and there are

no peaks of \ strictly between r and ¢,

Example. u(u,

\ 0, otherwise.

v) =1 if (A\,r)\ (u,t) is, for instance,

33/50
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Our main result implies the analog result for maximal quotients.

Corollary. (Brenti, 2002) Let u,v e S\ with

A(v) =X and A(u) = pu.

Then
A\p|=dp(M\p) _
q 2 , if A\ p is Dyck,

PZiU(Q) — {

0, otherwise.



We now consider the quasi-minuscule quotient S,[L"_l]\{l’n_l}.

A permutation v € S,, belongs to S HML=1} 46 anq only if
v 12 < v @) << v i (n—1).
Given v € SV e et
No(v) = (v (1), v 1 (n)).

Example. v = 23485617 ¢ S5 \17).

V=" e No(v) = (7,3).

35/50
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Proposition. The map v — Ag(v) is a bijection
=M L f(a,b) € [0]2 : a # b).
Furthermore, if Ag(u) = (a,b) and Ag(v) = (¢,d), then

u<v <= a<c and b=>d.

Theorem. (Brenti, I., Marietti, 2008) Let u,v € 57[;1—1]\{@'}’ with
No(v) = (a,b) and Ag(u) = (c,d).

Then
¢ 42 ifa—1<d<a<b<c<b+1,

PQ{,U(Q) — {

0, otherwise.
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6. Open problems

In [M. Kashiwara, T. Tanisaki, J. Algebra, 249 (2002), 306—325] a
geometric interpretation of the parabolic Kazhdan-Lusztig polynomials
for Weyl groups was given in terms of intersection homology.

In view of this, the following problem is natural.
Open problem. Find a geometric proof of our main theorem.

A geometric proof for the case of maximal quotients has been recently
found in [N. Perrin, Compositio Math., 143 (2007), 1255—-1312].
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T he following non-negativity conjecture is well known.

Conjecture. (Kazhdan-Lusztig, 1979) Let W be any Coxeter group
and u,v € W. Then Py, (gq) has non-negative coefficients.

It is widely believed (although not stated anywhere in the literature)
that the same non-negativity property holds for the parabolic Kazhdan-

Lusztig polynomials.

Conjecture. Let (W, S) be any Coxeter system, J C S and u,v € W".
Then Py ,(¢g) has non-negative coefficients.

It is true for Weyl groups by the above geometric interpretation.
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The following is a recent conjecture by Brenti.

Conjecture. (Brenti, 2008) Let (W, S) be any Coxeter system and
ICJCS.

Then, for all u,v € W7,

P’L{,U(Q) > P’l;,],’l}(q)

(coefficientwise).
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7. Enumerative results

7.1 Enumeration of Dyck partitions

Let A C (n™) be a partition and consider the associated path
path(A) = x1...2p4, 2 € {U,D}.

We make the substitution U+« ( D «—— ).

We define the matching set and the matching number of A by

M (X)) = {k € [n+ m] : parenthesis x; is matched},

[M (M)

5 = # pairs of matched parentheses in path(\).

mtc(\) =




Example. ) = (4,3,3,2,2,2) C (5°).

path(\) = ( () ) ) () ) () (

M) = {1,2,3,4,6,7,10,11}
mtc(\) = 4
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In 2002, Brenti enumerated the partitions p contained in a given
partition X such that A\ u is Dyck and found a g-analog formula.

This is a reformulation of his result.

Theorem. (Brenti, 2002) Let A C (n). Then

{u C XA\ pis Dyck} = 2mtc(d),

More generally, the following g-analog holds:

$ qdp(/\\u) = (¢ + 1)th(>\).

pCA
A\p is Dyck
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Recently, all the Dyck skew partition contained in a given rectangle
have been enumerated and a g-analog has been found.

Theorem. (I., August 2008)

min{n.m} 4 m — 2k 4+ 1 <n + m)Qk_

mc @™ Byekii= 3 it U

More generally, the following g-analog holds:

Z qdp(A\u) _ min%’m}n-l—m— 2k + 1(n-|-m
A\pC(n™) k=0 T m-ktl &
A\p is Dyck

)(g+ D).
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We have the following equivalent formulas.

Theorem. (I., August 2008)

_ min{n,m}
A\ i € (™) Dyeky| = (T )amintrmi4t STk
" k=0 &
3 gdP(AN\w)
A\pC(nm) min{n,m}
A\p is Dyck — (n T m) (q + 1)min{n,m}—|—1 o Z (n _|l; m) (q 4 1)k
" k=0

n

n h
Where L; is the truncating operator: Ly, ( Z aqu) = Z aqu.
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7.2 Connection with paths on regular trees

For any integer d > 2, we denote by T,; the d-regular tree, that is the
(infinite) tree where all the vertices have degree d.
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Given two vertices z and y in a graph G, we denote by PathsG,g(x,y)
the set of all paths in G of length ¢ from x to y.

Theorem. (I., August 2008) Let n,m € P.

Let x,y be two vertices of T3 at distance |n —m|. Then
A\ 1 C (™) 1 X\ is Dyck}| = |Pathsy, 1 (2, ).

More generally, we have the following g-analog.

Let g € Zxo and z,y be two vertices of T, ;5 at distance |n —m|. Then

Z qdp()\\,u) — |PathSTq_|_2,n—|—m(37ay)|'

A\pC(n™)
A\p is Dyck

For both results we gave combinatorial bijective proofs.
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7.3 Enumeration of e¢-Dyck partitions

Let (\,7) be a rooted partition contained in (n™), with
path(\,r) =1 ... xr @24 1... Ty, x€{D,U}
Let p and g, with p minimal and ¢ maximal, be such that

Tp...Trex,y1...0¢q=DD...DeUU... U.

In other words, p — 1 is the first peak to the left of » (unless p = 1)
and q is the first peak to the right of r (unless ¢ = n + m).
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Example. )\ =(3,3,1,1,1) C (4°) and r = 4.
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Theorem. (I., August 2008) Let (A, r) be a rooted partition and let
p and q be as above. Then

{(us ) - () \ () is @-Dyck}| = 27 (b4 2° — d),
where a,b,c,d only depend on A, namely
a = mtc(\),
b= |M(N) N [p,dll,
c=|MM\)n{r,r+ 1},
d=|M(\) N{p,q}l




Example. )= (3,3,1,1,1) C (4°) and r = 4.

b =

{(u,t) : (A7) \ (u,t) is @-Dyck}| = 237134+ 21 —2) =12.

a=mtc(\) =3

M) N [p,qll =3
MO\)N{r,r4+1} =1
M) N{p,q}| =2

49/50
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Example. ) = (3,2,1) C (33) and r = 2. Similarly,
{(, t) = (A7) \ (i,t) is e-Dyck}| = 12.

@

M/g

@
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Thank you very much!



