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1. Background

1.1 Coxeter groups

W : Coxeter group S : set of generators

Set of reflections of W : T = {vsv−1 : v ∈W, s ∈ S}.

Let v ∈W . The length of v is

�(v) = min{k : v is a product of k generators}.

The (right) descent set of v is

D(v) = {s ∈ S : �(vs) < �(v)}.
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Bruhat graph of W : directed graph with W as vertex set and

u→ v ⇔ u−1v ∈ T and �(u) < �(v).

Bruhat order of W : partial order on W defined by

u � v ⇔ u = u0 → u1 → · · · → uk = v.

W , with the Bruhat order, is a graded poset with rank function �.

For u, v ∈W , with u < v, we set

�(u, v) = �(v)− �(u) (distance in the Bruhat order).
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Let J ⊆ S be a fixed subset of generators.

The parabolic subgroup of W generated by J is

WJ = 〈J〉.

The quotient of W by J is

WJ = {v ∈W : �(sv) > �(v) for all s ∈ J}.

We will consider particular quotients of the symmetric group.
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1.2 The symmetric group

P = {1,2,3, . . . }, [n] = {1,2, . . . , n} (n ∈ P),

Symmetric group : Sn = {v : [n]→ [n] bijection}.

We denote v ∈ Sn by the word v(1) v(2) . . . v(n) and by its diagram.

Example. v = 61523748 ∈ S8 has diagram
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Sn is a Coxeter group, with generators the simple transpositions:

S = {(1,2), (2,3), . . . , (n− 1, n)}.

When we refer to these generators, the transposition (i, i+1) is simply

denoted by i. With this convention, the set of generators of Sn is

S = [n− 1].

The reflections are all the transpositions:

T = {(i, j) ∈ [n]2 : i < j}.



5/50

Let v ∈ Sn. The length of v is the number of its inversions:

�(v) = |{(i, j) ∈ [n]2 : i < j and v(i) > v(j)}|.

The descent set of v is

D(v) = |{i ∈ [n− 1] : v(i) > v(i + 1)}|.

Let J ⊆ [n− 1]. The quotient of Sn by J is

(Sn)
J = {v ∈ Sn : v−1(r) < v−1(r + 1) for all r ∈ J}.
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The maximal quotients of Sn are obtained by taking

J = [n− 1] \ {i} (i ∈ [n− 1]).

The quasi-minuscule quotients of Sn are obtained by taking

J = [n− 1] \ {i− 1, i} (2 � i � n− 1)

or

J = [n− 1] \ {1, n− 1}.

In this talk we study the quasi-minuscule quotiens of Sn.
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1.3 Partitions and lattice paths

We identify a partition λ = (λ1, . . . , λk) ⊆ (nm) with its diagram:

{(i, j) ∈ P2 : 1 � i � k and 1 � j � λi}.

Example. λ = (3,2,2,1,1) ⊆ (45).

English

notation

French

notation

Our notation

(Japanese?)
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Given a partition λ ⊆ (nm), the path associated with λ is the lattice

path from (0, m) to (n+m, n), with steps (1,1) (up steps) and (1,−1)

(down steps) which is the upper border of the diagram of λ:

path(λ) = x1x2 . . . xn+m, with xk ∈ {U,D},
Note that path(λ) has exactly n U’s and m D’s.

Example. λ = (3,2,2,1,1) ⊆ (45).

λ = path(λ) =
= UDDUDDUDU
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We denote the set of all integer partitions by P. It is well known that

P, partially ordered by set inclusion, is a lattice (the Young lattice).
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Let λ, µ ∈ P, with µ ⊆ λ. Then we call λ \ µ a skew partition.

A skew partition is a border strip (also called a ribbon) if it contains

no 2×2 square of cells. For brevity, we call a connected (by which we

mean “rookwise connected”) border strip a cbs.

The outer border strip θ of λ \ µ is the set of cells of λ \ µ such that

the cell directly above it is not in λ \ µ.

skew
partition

λ \ µ

outer
border strip

of λ \ µ
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A cbs θ ⊂ P2 is called a Dyck cbs if it is a “Dyck path”, which means

that no cell of θ has level strictly less than that of either the leftmost

or the rightmost of its cells. (In particular, in a Dyck cbs the leftmost

and rightmost cells have the same level.)

Dyck non-Dyck non-Dyck
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Let λ \ µ ⊂ P2 be a skew partition.

Recall that λ \µ is defined to be Dyck in the following inductive way:

(1) the empty partition is Dyck,

(2) if λ \ µ is connected, then λ \ µ is Dyck if and only if

(a) its outer border strip θ is a Dyck cbs,

(b) (λ \ µ) \ θ is Dyck,

(3) if λ \ µ is not connected, then λ \ µ is Dyck if and only if all of its

connected components are Dyck.



12/50

Let λ \ µ ⊂ P2 be a skew partition (not necessarily Dyck).

The depth of λ \ µ is defined inductively by

dp(λ \ µ) =

{
0, if λ = µ,

c(θ) + dp((λ \ µ) \ θ), otherwise,

where θ is the outer border strip of λ \ µ and

c(θ) = # connected components of θ.
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Example. Dyck skew partition:

λ \ µ

dp(λ \ µ) = 8.
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2. Parabolic Kazhdan-Lusztig polynomials

Theorem. (Deodhar, 1987) Let (W, S) be any Coxeter system and
let J ⊆ S. Then, there is a unique family of polynomials

{PJ
u,v(q)}u,v∈WJ ⊆ Z[q]

such that, for all u, v ∈WJ, with u � v, and fixed s ∈ D(v), one has

PJ
u,v(q) = P̃ (q)− ∑

{u�w�vs:ws<w}
µ(w, vs)q

�(w,v)
2 PJ

u,w(q),

where

P̃ (q) =

⎧⎪⎪⎨⎪⎪⎩
PJ

us,vs(q) + qPJ
u,vs(q), if us < u,

qPJ
us,vs(q) + PJ

u,vs(q) , if u < us ∈WJ,

0, if u < us �∈WJ.

and
µ(u, v) =

[
q

�(u,v)−1
2

]
(PJ

u,v).
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The PJ
u,v(q) are the parabolic Kazhdan-Lusztig polynomials of WJ.

For J = ∅, we get the (ordinary) Kazhdan-Lusztig polynomials of W :

Pu,v(q) = P ∅u,v(q).

Conversely, parabolic Kazhdan-Lusztig polynomials can be expressed

in terms their ordinary counterparts.

Proposition. Let J ⊆ S, and u, v ∈WJ. Then

PJ
u,v(q) =

∑
w∈WJ

(−1)�(w)Pwu,v(q).

The previous result has two interesting consequences.
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Corollary. Let I ⊆ J ⊆ S, and u, v ∈WJ. Then

PJ
u,v(q) =

∑
w∈(WJ)I

(−1)�(w)PI
wu,v(q).

Therefore, knowledge of the parabolic Kazhdan-Lusztig polynomials
for a given I ⊆ S implies knowledge of them for any J containing I.

Corollary. Let J ⊆ S, and u, v ∈WJ. Then[
q

�(u,v)−1
2

]
(Pu,v(q)) =

[
q

�(u,v)−1
2

]
(PJ

u,v(q)).

Therefore knowledge of the parabolic Kazhdan-Lusztig polynomials for
a given J ⊆ S implies knowledge of the maximum-degree coefficient
of the ordinary Kazhdan-Lusztig polynomials for all elements of WJ.

These are the coefficients that are of interest in the construction of
the Kazhdan-Lusztig cells and representations.
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Besides their connections with Kazhdan-Lusztig polynomials (which

have applications in several areas of mathematics, including geometry

of Schubert varieties and representation theory), the parabolic ones

also play a direct role in the following areas:

• generalized Verma modules

• tilting modules

• quantized Schur algebras

• representation theory of the Lie algebra gln

• Macdonald polynomials

• partial flag varieties.
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In [Pacific Journal of Mathematics 207 (2002), 257–286], Brenti

found a closed formula for the parabolic Kazhdan-Lusztig polynomials

for the maximal quotients of the symmetric group.

Theorem. (Brenti, 2002) Let u, v ∈ S
[n−1]\{i}
n , with

Λ(v) = λ and Λ(u) = µ.

Then

PJ
u,v(q) =

⎧⎨⎩ q
|λ\µ|−dp(λ\µ)

2 , if λ \ µ is Dyck,

0, otherwise.

In this talk we generalize this result to the quasi-minuscule quotients.
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3. Quasi-minuscule quotiens

We will now give a combinatorial description of the quasi-minuscule
quotients in Sn. We start with the following simple observation.

A permutation v ∈ Sn belongs to S
[n−1]\{i−1,i}
n if and only if

v−1(1) < · · · < v−1(i− 1) and v−1(i) < · · · < v−1(n).

Example. v = 61523748 ∈ S
[7]\{4,5}
8 .

← i = 5
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Let λ ⊆ (nm) be a partition and let

path(λ) = x1 . . . xn+m, xk ∈ {U,D}.
We say that an index k ∈ [n + m− 1] is a{

valley of λ, if (xk, xk+1) = (D,U),

peak of λ, if (xk, xk+1) = (U,D).

Definition. A rooted partition is a pair (λ, r), where λ is a partition

with at least one valley and r is one of its valleys.

We think of a rooted partition as a lattice path with a ball in one of

its valleys. If λ ⊆ (nm) and path(λ) = x1 . . . , xn+m, then we set

path(λ, r) = x1 . . . xr • xr+1 . . . xn+m
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Example. λ = (3,2,2,1,1) ⊆ (45) and r = 3.

(λ, r) =

path(λ, r) =
= UDD •UDDUDU
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Let v ∈ S
[n−1]\{i−1,i}
n . The partition associated with v, denoted by

Λ(v), is the non-increasing rearrangement of the inversion table of v.

Example. v = 61523748 ∈ S
[7]\{4,5}
8 . Then

Λ(v) = (3,2,2,1,1) =

Remark. Λ(v) ⊆ ((n− i + 1)i) and v−1(i) is a valley of Λ(v).
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Proposition. The map v �→ (Λ(v), v−1(i)) is a bijection

S
[n−1]\{i−1,i}
n ←→ {rooted partitions ⊆ ((n− i + 1)i)}.

Furthermore, �(v) = |Λ(v)|.

The rooted partition associated with v is

Λ•(v) = (Λ(v), v−1(i)).

Example. v = 61523748 ∈ S
[7]\{4,5}
8 . Then

Λ•(v) = ((3,2,2,1,1),3) =
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The rooted partition Λ•(v) can be constructed directly from v.

Proposition. Let v ∈ S
[n−1]\{i−1,i}
n . Then

path(Λ•(v)) = x1x2 . . . xn,

where

xk =

⎧⎪⎪⎨⎪⎪⎩
D, if v(k) < i,

D •U, if v(k) = i,

U, if v(k) > i.
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Example. v = 61523748 ∈ S
[7]\{4,5}
8 .

v =
← i = 5

↑
v−1(i) = 3

path(λ, r) =
= U

x1

D
x2

D •U︸ ︷︷ ︸
x3

D
x4

D
x5

U
x6

D
x7

U
x8
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Let λ be a partition. If x is a peak or a valley of λ, we denote by x̂

the cell immediately below x or above x, respectively. Then we set

λx =

{
λ \ {x̂}, if x is a peak of λ,

λ ∪ {x̂}, if x is a valley of λ.

λ x̂ ←→

(x = 4)

x̂ λx

The operator ( · )x is clearly an involution.
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We now give a description of the Bruhat order on S
[n−1]\{i−1,i}
n in

terms of rooted partitions, showing that, basically, the behaviour of

the root is that of a ball subject to gravity.

Let (λ, r) be a rooted partition and let x be a valley of λ, such that

λx has at least one valley. We say that (λ′, r′) is obtained from (λ, r)

by an elementary move if λ′ = λx and

r′ =
{

r, if x �= r,

one of the valleys around its peak x, if x = r.
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Proposition. Let u, v ∈ S
[n−1]\{i−1,i}
n , with

Λ•(v) = (λ, r) and Λ•(u) = (µ, t).

Then v covers u (in the Bruhat order) if and only if (λ, r) is obtained

from (µ, t) by an elementary move.

Example. v = 61523748 ∈ S
[7]\{4,5}
8 .

Λ•(v) = valleys(Λ•(v)) = {3,6,8}.
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Thus, there are four w ∈ S
[7]\{4,5}
8 that cover v, obtained as follows:

�−→ �−→

Λ•(v) Λ•(w) Λ•(v) Λ•(w)

�−→ �−→

Λ•(v) Λ•(w) Λ•(v) Λ•(w)
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The characterization of the covering relation implies the following.

Proposition. There is a bijection

rooted partitions ←→ covering relations in Young’s lattice.

Proposition. Let u, v ∈ S
[n−1]\{i−1,i}
n . Then

u � v =⇒ Λ(u) ⊆ Λ(v).

Note that the converse of the last assertion is not true in general.

Example. u = 16273548, v = 61523748 ∈ S
[7]\{4,5}
8 .

Λ(u) = (3,2,2,1,0) ⊆ (3,2,2,1,1) = Λ(v), but u �� v.
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4. • -Dyck partitions

This is the main new combinatorial concept arising from this work.

If (λ, r) and (µ, t) are two rooted partitions such that µ ⊆ λ, then we

call (λ, r) \ (µ, t) a skew rooted partition.
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Definition. A skew rooted partition (λ, r) \ (µ, t) is • -Dyck if

(1) there are no peaks of λ strictly between the two roots,

(2) at least one of λ \ µ and λ \ µt is Dyck.

Let (λ, r) \ (µ, t) be • -Dyck. The depth of (λ, r) \ (µ, t) is

dp((λ, r) \ (µ, t)) =

{
dp(λ \ µ), if λ \ µ is Dyck,

dp(λ \ µt) + 1, if λ \ µt is Dyck,

Proposition. Let λ \ µ be skew partition and let t be a valley of µ.

Suppose that at least one of λ \ µ and λ \ µt is Dyck. Then λ \ µ and

λ \ µt are both Dyck if and only if t is a peak of λ. In this case,

dp(λ \ µ) = dp(λ \ µt) + 1.



31/50

Four • -Dyck skew rooted partitions:

For all of them,

|λ \ µ| = 98 and dp((λ, r) \ (µ, t)) = 8.
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5. Main result

Theorem. (Brenti, I., Marietti, 2008) Let u, v ∈ S
[n−1]\{i−1,i}
n , with

Λ•(v) = (λ, r) and Λ•(u) = (µ, t).

Then

PJ
u,v(q) =

⎧⎨⎩ q
|λ\µ|−dp((λ,r)\(µ,t))

2 , if (λ, r) \ (µ, t) is • -Dyck,

0, otherwise.

Example. If (λ, r) \ (µ, t) is one of the previous four, then

PJ
u,v(q) = q

98−8
2 = q45.
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Corollary. Let u, v ∈ S
[n−1]\{i−1,i}
n , with

Λ•(v) = (λ, r) and Λ•(u) = (µ, t).

Then

µ(u, v) =

⎧⎪⎪⎨⎪⎪⎩
1, if λ \ µ is a Dyck cbs and there are

no peaks of λ strictly between r and t,

0, otherwise.

Example. µ(u, v) = 1 if (λ, r) \ (µ, t) is, for instance,

or
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Our main result implies the analog result for maximal quotients.

Corollary. (Brenti, 2002) Let u, v ∈ S
[n−1]\{i}
n , with

Λ(v) = λ and Λ(u) = µ.

Then

PJ
u,v(q) =

⎧⎨⎩ q
|λ\µ|−dp(λ\µ)

2 , if λ \ µ is Dyck,

0, otherwise.
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We now consider the quasi-minuscule quotient S
[n−1]\{1,n−1}
n .

A permutation v ∈ Sn belongs to S
[n−1]\{1,n−1}
n if and only if

v−1(2) < v−1(3) < · · · < v−1(n− 1).

Given v ∈ S
[n−1]\{i}
n , we let

Λ0(v) = (v−1(1), v−1(n)).

Example. v = 23485617 ∈ S
[7]\{1,7}
8 .

v =

← 1

← 8

↑
v−1(8) = 3

↑
7 = v−1(1)

Λ0(v) = (7,3).
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Proposition. The map v �→ Λ0(v) is a bijection

S
[n−1]\{i}
n ←→ {(a, b) ∈ [n]2 : a �= b}.

Furthermore, if Λ0(u) = (a, b) and Λ0(v) = (c, d), then

u � v ⇐⇒ a � c and b � d.

Theorem. (Brenti, I., Marietti, 2008) Let u, v ∈ S
[n−1]\{i}
n , with

Λ0(v) = (a, b) and Λ0(u) = (c, d).

Then

PJ
u,v(q) =

⎧⎨⎩ qc−d−2, if a− 1 � d � a � b � c � b + 1,

0, otherwise.
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6. Open problems

In [M. Kashiwara, T. Tanisaki, J. Algebra, 249 (2002), 306–325] a

geometric interpretation of the parabolic Kazhdan-Lusztig polynomials

for Weyl groups was given in terms of intersection homology.

In view of this, the following problem is natural.

Open problem. Find a geometric proof of our main theorem.

A geometric proof for the case of maximal quotients has been recently

found in [N. Perrin, Compositio Math., 143 (2007), 1255–1312].
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The following non-negativity conjecture is well known.

Conjecture. (Kazhdan-Lusztig, 1979) Let W be any Coxeter group

and u, v ∈W . Then Pu,v(q) has non-negative coefficients.

It is widely believed (although not stated anywhere in the literature)

that the same non-negativity property holds for the parabolic Kazhdan-

Lusztig polynomials.

Conjecture. Let (W, S) be any Coxeter system, J ⊆ S and u, v ∈WJ.

Then PJ
u,v(q) has non-negative coefficients.

It is true for Weyl groups by the above geometric interpretation.
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The following is a recent conjecture by Brenti.

Conjecture. (Brenti, 2008) Let (W, S) be any Coxeter system and

I ⊆ J ⊆ S.

Then, for all u, v ∈WJ,

PI
u,v(q) � PJ

u,v(q)

(coefficientwise).
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7. Enumerative results

7.1 Enumeration of Dyck partitions

Let λ ⊆ (nm) be a partition and consider the associated path

path(λ) = x1 . . . xn+m, xk ∈ {U,D}.

We make the substitution U ←→ ( D ←→ ).

We define the matching set and the matching number of λ by

M(λ) = {k ∈ [n + m] : parenthesis xk is matched},

mtc(λ) =
|M(λ)|

2
= # pairs of matched parentheses in path(λ).
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Example. λ = (4,3,3,2,2,2) ⊆ (56).

λ =

path(λ) = ( ( ) ) ) ( ) ) ( ) (

M(λ) = {1,2,3,4,6,7,10,11}
mtc(λ) = 4
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In 2002, Brenti enumerated the partitions µ contained in a given

partition λ such that λ \ µ is Dyck and found a q-analog formula.

This is a reformulation of his result.

Theorem. (Brenti, 2002) Let λ ⊆ (nm). Then

|{µ ⊆ λ : λ \ µ is Dyck} = 2mtc(λ).

More generally, the following q-analog holds:∑
µ⊆λ

λ\µ is Dyck

qdp(λ\µ) = (q + 1)mtc(λ).
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Recently, all the Dyck skew partition contained in a given rectangle

have been enumerated and a q-analog has been found.

Theorem. (I., August 2008)

|{λ \ µ ⊆ (nm) Dyck}| =
min{n,m}∑

k=0

n + m− 2k + 1

n + m− k + 1

(n + m

k

)
2k.

More generally, the following q-analog holds:

∑
λ\µ⊆(nm)

λ\µ is Dyck

qdp(λ\µ) =
min{n,m}∑

k=0

n + m− 2k + 1

n + m− k + 1

(n + m

k

)
(q + 1)k.
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We have the following equivalent formulas.

Theorem. (I., August 2008)

|{λ \ µ ⊆ (nm) Dyck}| =
(n + m

n

)
2min{n,m}+1 −

min{n,m}∑
k=0

(n + m

k

)
2k.

∑
λ\µ⊆(nm)

λ\µ is Dyck

qdp(λ\µ)

=
(n + m

n

)
(q + 1)min{n,m}+1 −

min{n,m}∑
k=0

(n + m

k

)
(q + 1)k

=
(n + m

n

)
(q + 1)min{n,m}+1 − Lmin{n,m}((q + 2)n+m).

Where Lh is the truncating operator : Lh

⎛⎝ n∑
k=0

akqk

⎞⎠ =
h∑

k=0

akqk.
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7.2 Connection with paths on regular trees

For any integer d � 2, we denote by Td the d-regular tree, that is the

(infinite) tree where all the vertices have degree d.
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...

• • • • • • • • · · ·
•

������ •
������

������������� •
�������������

																			 •
																			



























 • • • • · · ·
•

������ •
������

������������� •
�������������

																			 •
																			



























 • • • • · · ·
•

������ •
������

������������� •
�������������

																			 •
																			



























 · · ·
•

������ •
������

������������� · · ·
•

������ · · ·
...



45/50

Given two vertices x and y in a graph G, we denote by PathsG,�(x, y)

the set of all paths in G of length � from x to y.

Theorem. (I., August 2008) Let n, m ∈ P.

Let x, y be two vertices of T3 at distance |n−m|. Then

|{λ \ µ ⊆ (nm) : λ \ µ is Dyck}| = |PathsT3,n+m(x, y)|.

More generally, we have the following q-analog.

Let q ∈ Z�0 and x, y be two vertices of Tq+2 at distance |n−m|. Then∑
λ\µ⊆(nm)

λ\µ is Dyck

qdp(λ\µ) = |PathsTq+2,n+m(x, y)|.

For both results we gave combinatorial bijective proofs.
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7.3 Enumeration of • -Dyck partitions

Let (λ, r) be a rooted partition contained in (nm), with

path(λ, r) = x1 . . . xr • xr+1 . . . xn+m, xk ∈ {D,U}.

Let p and q, with p minimal and q maximal, be such that

xp . . . xr • xr+1 . . . xq = DD . . .D •UU . . .U.

In other words, p − 1 is the first peak to the left of r (unless p = 1)

and q is the first peak to the right of r (unless q = n + m).
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Example. λ = (3,3,1,1,1) ⊆ (45) and r = 4.

↑
p = 2

↑
r = 4

↑
q = 6
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Theorem. (I., August 2008) Let (λ, r) be a rooted partition and let

p and q be as above. Then

|{(µ, t) : (λ, r) \ (µ, t) is • -Dyck}| = 2a−1(b + 2c − d),

where a, b, c, d only depend on λ, namely

a = mtc(λ),

b = |M(λ) ∩ [p, q]|,
c = |M(λ) ∩ {r, r + 1}|,
d = |M(λ) ∩ {p, q}|.
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Example. λ = (3,3,1,1,1) ⊆ (45) and r = 4.

↑
p = 2

↑
r = 4

↑
q = 6

a = mtc(λ) = 3

b = |M(λ) ∩ [p, q]| = 3

c = |M(λ) ∩ {r, r + 1}| = 1

d = |M(λ) ∩ {p, q}| = 2

|{(µ, t) : (λ, r) \ (µ, t) is • -Dyck}| = 23−1(3 + 21 − 2) = 12.
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Example. λ = (3,2,1) ⊆ (33) and r = 2. Similarly,

|{(µ, t) : (λ, r) \ (µ, t) is • -Dyck}| = 12.
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Thank you very much!


