
GARRIGUE, Jacques Professor

Office: Rm 405 in Math. Bldg.

Telephone: +81 (0)52–789–4661 (ext. 4661)

E-mail: garrigue@math.nagoya-u.ac.jp

Website: http://www.math.nagoya-u.ac.jp/~garrigue/

Membership of academic societies:

ACM, JSSST (Japanese Society for Software Science and Technology),

IPSJ (Information Processing Society of Japan)

Research Interest:

• Theory of Programming Languages

• Typed lambda-calculi and type inference

• Applications of proof assistants

Research Summary:

My reasearch aims at eradicating bugs from programs while preserving expressiveness. This is

becoming a fundamental need, as programs are everywhere. There are several approaches to reach

this goal, but I have been working mostly on type systems, and proof of programs.

Participating in the development of the functional programming language OCaml, I have worked

at enriching expressiveness without losing safety. Functional programming languages are based on

the typed lambda-calculus, and have a strong connection to logic. From logic comes the concept

of soundness. A type system is sound if typed programs are guaranteed not to cause type-related

errors at runtime.

One important property of advanced type systems is to allow the reuse of code in differently

typed contexts. This is called polymorphism. I made several contributions in that domain [1, 2, 5].

However, it is often hard to prove that the algorithm checking that a program has a type is

correct. For this reason, I have also proved in Coq the soundness and completeness of such an

inference algorithm [3].

In another attempt, I have been working with Reynald Affeldt and Akira Tanaka from AIST

on applying Coq to proofs of systems and mathematical theories. Together we have proved some

linear codes from coding theory [4], and worked on code generation from certified algorithms [6]

Outside of the above work on programming languages and proof assistants, I am also interested

in logic, and computability theory.

Major Publications:

[1] J. Garrigue and D. Rémy, Extending ML with semi-explicit first class polymorphism. Informa-

tion and Computation 155 (1999), 134–171.

[2] J. Garrigue and D. Rémy, Ambivalent Types for Principal Type Inference with GADTs. In 11th

Asian Symposium on Programming Languages and Systems, Springer LNCS (2013).

[3] J. Garrigue, A Certified Implementation of ML with Structural Polymorphism. Mathematical

Structures in Computer Science (2014) 11:1–25.

[4] J. Garrigue and R. Affeldt, Formalization of Error-correcting Codes: from Hamming to Modern

Coding Theory. In 6th Conference on Interactive Theorem Proving, Springer LNCS (2015).

garrigue@math.nagoya-u.ac.jp
http://www.math.nagoya-u.ac.jp/~garrigue/


[5] J. Garrigue and J. Le Normand. GADTs and exhaustiveness: Looking for the impossible. In

Proc. ML Family / OCaml Workshops 2015, number 241 in EPTCS (2017), 23–35.

[6] A. Tanaka, R. Affeldt, J. Garrigue. Safe low-level code generation in coq using monomorphiza-

tion and monadification. Journal of Information Processing (2018) 26:54-72.

Awards and Prizes:

• JSSST Takahashi encouragement prize (2010)

Education and Appointments:

1995 Doctor of Science of the University of Tokyo

1995 Research Associate, Kyoto University

2004 Associate Professor, Nagoya University

2018 Professor, Nagoya University

Message to Prospective Students:

My research area is directly connected to functional programming languages, but the subject of

my small class is often more logic oriented. The main subjects are computability, lambda-calculus

and type theory, and logic.

Computability (or theory of computation) is the study of which functions can be computed by

a concrete algorithm. Among mathematical functions, some can be computed by a program, and

some cannot. Morevover, this difference is not related to the programming language used. From a

logical point of view, this means that no program can discover all the possible theorems. We have

used the following textbook.

1. Neil D. Jones, Computability and Complexity from a Programming Perspective. MIT Press,

1995.

Lambda-calculus is a framework connecting logic and computer science. Its type theory can

be applied to the construction of both programming languages and theorem provers. The π-

calculus gives an insight into concurrent programming. In small classes, we have used the following

textbooks.

1. Benjamin C. Pierce, Types and Programming Languages. MIT Press, 2002.

2. Yves Bertot, Pierre Castéran, Interactive Theorem Proving and Program Development. Springer,

2004.

3. Franz Baader, Tobias Nipkow, Term Rewriting and All That. Cambridge Univ. Press, 1998.

Logic provides a foundation to both areas, and also some techniques to prove the valvidity

of logical statements (using the resolution procedure for instance). We have used the following

textbooks.

1. Jean Gallier, Logic for computer science. Online edition, 1986.

2. John Harrison, Handbook of practical logic and automated reasoning. Cambridge University

Press, 2009.

3. Jean-Yves Girard, The Blind Spot: Lectures on Logic. European Mathematical Society, 2011.

No special knowledge is required to start working on thes subjects, but logic is a welcome basis.

For the master thesis, I can help in various areas of theoretical computer science.


