
Linear quivers, generic extensions
and Kashiwara operators

Jie Du
(University of New South Wales)

6th International Conference on
Representation theory of Algebraic Groups and

Quantum Groups
Nagoya University, 12–17 June, 2006

(Joint work with B. Deng and G. Zhang)



The crystal graph C(A2)

(0,0,0)

(1,0,0) (0,0,1)

(2,0,0) (1,0,1) (0,1,0) (0,0,2)

(3,0,0) (2,0,1) (1,0,2) (1,1,0) (0,1,1) (0,0,3)

(4,0,0) (3,0,1) (2,0,2) (1,0,3) (2,1,0) (1,1,1) (0,2,0) (0,1,2) (0,0,4)

κ : Path0(C)→ Λ; p 7→ finish vertex
E.g., κ(2212) = (0, 1, 2) with 1 =red and 2 =green.



The Problem
Let Ω be the set of all words on the alphabet
{1, 2, . . . , n}. Then we obtain a map

κ : Ω→ Λ.

We shall call it the Kashiwara map.
• representation theoretic interpretation
• better understanding of crystal graphs
• word parametrization of the canonical basis

It seems hard to understand the map.



Quivers and path algebras
• Let Q = (Q0, Q1) = (I,Q1) be a quiver.

If ρ ∈ Q1 is an arrow from tail i to head j, we
write h(ρ) for j and t(ρ) for i.

• A vertex i ∈ I is called a sink (resp. source) if
there is no arrow ρ with t(ρ) = i (resp. h(ρ) = i).

• Let kQ be the path algebra of Q over a field k.

E.g., if Q is the quiver � � �

1 2 3
then

kQ ∼=





k k k

0 k k

0 0 k







Quiver representations
• A representation V = (Vi, Vρ) of Q over k

consists of
a set of f. d. k-vector spaces Vi, i ∈ I , and
a set of linear maps Vρ : Vt(ρ) → Vh(ρ), ρ ∈ Q1.

We may identify V as a (left) kQ-module.
• Call dimV := (dim kV1, . . . , dim kVn) the

dimension vector of V .
• LetM be the set of isoclasses of nilpotent

representations of Q.



Representation varieties (k = k̄)
• Fix d = (di)i ∈ Nn and define the affine space

R(d) :=
∏

ρ∈Q1

Homk(k
dt(ρ), kdh(ρ)).

Thus, a point x = (xρ)ρ of R(d) determines a
representation V (x) of Q.

• The algebraic group GL(d) =
∏n

i=1GLdi(k) acts
on R(d) by (gi)i · (xρ)ρ = (gh(ρ)xρg

−1
t(ρ))ρ.

• There is a bijection:
{GL(d)-orbits} ←→ {isoclasses inMd}.



Dim of orbits and the poset M
• The stabilizer GL(d)x = {g ∈ GL(d) | gx = x}

of x is the group of automorphisms on
M := V (x) which is Zariski-open in EndkQ(M)
and has dimension equal to dim EndkQ(M).
Hence the orbit OM of M has dimension

dimOM = dimGL(d)− dim EndkQ(M).

• For two representations M,N of Q, define
[N ] 6 [M ] (or simply N 6 M ) iff ON ⊆ OM ,
the closure of OM .

• This order is opposite to the degeneration order
which is independent of k.



Dynkin quivers
• If the underlying graph of Q is a Dynkin graph,

then, by Gabriel’s Theorem, there is a bijection
ind(Q)←→ Φ+(Q).

• This induces a bijection from Λ toM, where
Λ = {λ : Φ+ −→ N},

sending every λ ∈ Λ to
M(λ) = Mk(λ) :=

⊕

α∈Φ+ λ(α)Mk(α).

• Thus, we obtain a poset (Λ,6).



Cyclic quivers
• If Q is the cyclic quiver

� � � � �

�

∆n :

n

1 2 3 n−2 n−1

then, for each integer l > 1, there is a unique (up
to isomorphism) indecomposable nilpotent
representation Si[l] of length l with top Si.

• Thus, we obtain a bijection from Λ toM, where
Λ = {λ : I × Z+ −→ N | supp(λ) is finite},
sending every λ ∈ Λ to

M(λ) :=
⊕

i∈I,l>1 λi,lSi[l].



Generic extensions
From now on, we assume that

Q is a Dynkin or cyclic quiver.
• Given [M ], [N ] ∈M, consider the extensions

0 −→ N −→ E −→M −→ 0

of M by N .
Reineke proved that the one with dimOE

maximal is a unique (up to isomorphism).

• We call E the generic extension of M by N ,
denoted by M ∗N .



The monoid M
• Define operation [M ] ∗ [N ] = [M ∗N ] onM.

It is associative.
Thus, (M, ∗) is a monoid with identity 1 = [0].

• If Q is a Dynkin quiver, thenM is generated by
simples [Si], i ∈ I .

• If Q is a cyclic quiver, then the simples [Si],
i ∈ I , generate a proper submonoidMc,
which consists of aperiodic modules.



The generic extension map
• Let Ω be the set of all words on the alphabet
I = {1, 2, . . . , n}.
For w = i1i2 · · · im ∈ Ω, let ℘(w) ∈ Λ be the
element defined by

[Si1] ∗ · · · ∗ [Sim] = [M(℘(w))].

Thus, we obtain a monoid homomorphism
℘ : Ω −→ Λ, w 7−→ ℘(w),

• Call ℘ the generic extension map.
• If Q is a Dynkin quiver, then ℘ is surjective.
• If Q is a cyclic quiver, then ℘ is not surjective

with Im℘ = Λa, the set of all aperiodic elements.



The generic extension graph G

• For each i ∈ I , there is a map
σi : Λ −→ Λ; λ 7−→ σiλ

defined by M(σiλ) ∼= Si ∗M(λ).

Clearly, for each w = i1i2 . . . im, we have
℘(w) = σi1σi2 · · · σim(0),

where 0 is the zero function.

• The generic extension graph associated to Q is
the directed graph G with

vertices: λ ∈ Λ,

arrows: λ i−→ µ,
where λ, µ ∈ Λ and σiλ = µ for some i ∈ I .



Hall polynomials
• Ringel proved that, for λ, µ1, . . . , µm in Λ, there

is a polynomial ϕλ
µ1,...,µm

(T ) ∈ Z[T ] such that

ϕλ
µ1,...,µm

(qk) = F
Mk(λ)
Mk(µ1),...,Mk(µm)

for any finite field k of qk elements

Here FM
N1,...,Nm

denotes the number of filtrations
M = M0 ⊃M1 ⊃ · · · ⊃Mm−1 ⊃Mm = 0

such that Ms−1/Ms
∼= Ns for all 1 6 s 6 m.

• These polynomials are called Hall polynomials.



Ringel-Hall algebras
Let Z = Z[v, v−1].
• The (twisted generic) Ringel-Hall algebra Hv(Q)

of Q is the free Z -module having basis
{uλ = u[M(λ)] | λ ∈ Λ}

and satisfying the mult’n rules
uµuν = vε(µ,ν)

∑

λ∈Λ ϕλ
µ,ν(v

2)uλ.

• Here

ε(µ, ν) = dim kHomkQ(M(µ),M(ν))

− dim kExt 1kQ(M(µ),M(ν))

is the Euler form associated to the quiver Q.



Quantum enveloping algebras
• Let U be the QEA over Q(v) associated to Q

with generators Ei, Fi, K
±
i , i ∈ I .

• Let U+ be the subalgebra of U generated by Ei.
• The Lusztig integral form U+ is the

Z -subalgebra of U
+ generated by divided

powers E
(m)
i (i ∈ I,m > 1).

• (Ringel) U+ is isomorphic to the Ringel-Hall
algebraH (resp. C) via E

(m)
i 7→ u

(m)
i , if Q is

Dynkin (resp. cyclic).



PBW type bases
Let ũλ = v−dimM(λ)+dim End(M(λ))uλ ∈ U+.

• If Q is a Dynkin quiver, then {Eλ = ũλ}λ∈Λ is a
PBW type basis, which

(1) coincides with Lusztig’s one defined by
braid group actions;

(2) is used in the construction of the
canonical basis.

• If Q is a cyclic quiver, a similar basis {Eλ}λ∈Λa
can be constructed in the form
(D-D-Xiao) Eλ = ũλ + (lin comb of ũµ, µ 6∈ Λa).

• Lin-Xiao-Zhang, (Hubery), Beck–Nakajima



The SMB property
Theorem (Deng-Du)

For each w = i1i2 · · · im ∈ Ω, define a monomial
Ew = Ei1Ei2 · · ·Eim ∈ U

+.

Let Q be a Dynkin quiver (resp. a cyclic quiver).
For each λ ∈ Λ (resp. Λa), choose an arbitrary
word wλ ∈ ℘−1(λ). Then

(1) the set {Ewλ
| λ ∈ Λ (resp. Λa)} is a

Q(v)-basis of U
+;

(2) if all wλ are distinguished, then
{E(wλ) | λ ∈ Λ (resp. Λa)} is a Z -basis of U+.



Canonical bases (Lusztig)
• For each λ ∈ Λ, there is a unique element

bλ = Eλ +
∑

µ<λ pλ,µEµ ∈ U+

with all pλ,µ ∈ v−1Z[v−1] and b̄λ = bλ,
where ¯ is the Z-algebra involution
− : U+ −→ U+; E

(m)
i 7−→ E

(m)
i , v 7−→ v−1.

• If Q is a Dynkin quiver, then B = {bλ | λ ∈ Λ}
is a Z -basis of U+.

• If Q is a cyclic quiver, then B = {bπ | π ∈ Λa} is
a Z -basis of U+



Kashiwara operators
• Each x ∈ U

+ can be written uniquely in the form
x =

∑

m>0E
(m)
i xm

where xm ∈ U
+ satisfy Fixm − xmFi ∈ KiU

+

and xm = 0 for mÀ 0.
• The Kashiwara operator

Ẽi : U
+ → U

+

is defined by
Ẽi(x) =

∑

m>0E
(m+1)
i xm.



The Kashiwara map κ
Let
A∞ = {f(v) ∈ Q(v) | f(v−1) regular at v = 0}.
• Let L be the A∞-submodule of U

+ generated by
ew = Ẽi1Ẽi2 · · · Ẽim · 1

for all words w = i1i2 · · · im ∈ Ω.
• Kashiwara tells us:

B = {ew + v−1L | q ∈ Ω}
is a Q-basis for L /v−1L , from which the global
crystal basis is constructed.

• Thus, for each word w = i1i2 . . . im, there is a
unique κ(w) ∈ Λ s. t.

Ẽi1Ẽi2 · · · Ẽim · 1 ≡ bκ(w) (mod v−1L ).



The crystal graph C

• For each i ∈ I , there is a map
τi : Λ −→ Λ; λ 7−→ τiλ define by

Ẽi(bλ) ≡ bτiλ (mod v−1L ).

• We have
κ(w) = τi1τi2 · · · τim(0), ∀w = i1i2 . . . im.

• The crystal graph associated to Q is the directed
graph C with

vertices: λ ∈ Λ,

arrows: λ i−→ µ,
where λ, µ ∈ Λ and τiλ = µ for some i ∈ I .



Word parametrization
• The maps ℘ and κ are different (e.g., not both are

monoid homom), but can be used to parameterize
the canonical (or crystal) bases.
For each λ ∈ Λ, choose

yλ ∈ ℘−1(λ) and wλ ∈ κ−1(λ).

Both sets {yλ}λ∈Λ and {wλ}λ∈Λ give two
parametrizations of the canonical basis.

Question: Can the two word parametrizations be
made the same?

In other words, can we prove that
℘−1(λ) ∩ κ−1(λ) 6= ∅ for all λ ∈ Λ?



A comparison of σi and τi
Let Q be a Dynkin quiver.
• (Lusztig) If i is a sink of Q, then

τi = σi : Λ→ Λ.

• In general, write EiEλ =
∑

µ fi,λ;µEµ. Then

(1) fi,λ;µ 6= 0 =⇒M(µ) 6 M(σiλ).

(2) (Reineke) τiλ = µ ⇐⇒ fi,λ;µ 6= 0

and deg+ fi,λ;µ = ai(λ) > ai(µ)− 1 (Q 6= E8),

where ai(λ) := maxµ deg
+ fi,λ;µ.

• Thus, combining (1) and (2) and . . . yields
κ(w) 6 ℘(w) for all w.



The linear quiver case

/ 0 1 2 3

1 2 3 n−1 n

For λ = (λs,t) ∈ Λ, let

mσ = max{j | λi+1,j 6= 0},
mτ = min{k| | sik = maxjsij},

where sij =
∑

l>j λi,l −
∑

l>j+1 λi+1,l.

Then we have

(σiλ)s,t =







λs,t + 1 if (s, t) = (i,mσ),
λs,t − 1 if (s, t) = (i+ 1,mσ),
λs,t otherwise.



The linear quiver case

4 5 6 7 8

1 2 3 n−1 n

For λ = (λs,t) ∈ Λ, let

mσ = max{j | λi+1,j 6= 0},
mτ = min{k| | sik = maxjsij},

where sij =
∑

l>j λi,l −
∑

l>j+1 λi+1,l.

Then we have

(τ iλ)s,t =







λs,t + 1 if (s, t) = (i,mτ),
λs,t − 1 if (s, t) = (i+ 1,mτ),
λs,t otherwise.



Example
• Let Q be the quiver A B

1 2
Then 2 is a sink and so σ2 = τ 2.

• Write λ ∈ Λ as the triple (a, b, c), if
a = λ(α1), b = λ(α1 + α2), and c = λ(α2).

• Thus, we have

σ1(a, b, c) =

{
(a+ 1, b, c) if c = 0,
(a, b+ 1, c− 1) if c > 1

and

τ 1(a, b, c) =

{
(a+ 1, b, c) if a > c,
(a, b+ 1, c− 1) if a < c.



The graph G(A2) and C(A2)

The graph G(A2) with σ1 = red, σ2 = green.

(0,0,0)

(1,0,0) (0,0,1)

(2,0,0) (1,0,1) (0,1,0) (0,0,2)

(3,0,0) (2,0,1) (1,0,2) (1,1,0) (0,1,1) (0,0,3)

(4,0,0) (3,0,1) (2,0,2) (1,0,3) (2,1,0) (1,1,1) (0,2,0) (0,1,2) (0,0,4)



The graph G(A2) and C(A2)

The graph C(A2) with τ1 = red, τ2 = green.

(0,0,0)

(1,0,0) (0,0,1)

(2,0,0) (1,0,1) (0,1,0) (0,0,2)

(3,0,0) (2,0,1) (1,0,2) (1,1,0) (0,1,1) (0,0,3)

(4,0,0) (3,0,1) (2,0,2) (1,0,3) (2,1,0) (1,1,1) (0,2,0) (0,1,2) (0,0,4)



Good modules
• Φ+(Q) = {(i, j) | 1 6 i 6 j 6 n}.
• Let Mi,j be the indecomposable whose top and

socle are isomorphic to Si and Sj , respectively.
• λ = (λs,t) ∈ Λ is said to be good at i if there

exists j > i such that

M(λ) ∼=
(
⊕n

s=j λi,sMi,s

)

⊕ λi+1,jMi+1,j ⊕N,

where the top of N contains no Si or Si+1.
Lemma

If λ is good at i, then σiλ = τiλ.



Theorem (D-D-Z)
Let Q be a linear quiver.
Let λ ∈ Λ, and define, for 1 6 i 6 j 6 n,

wi,j = i . . . i︸ ︷︷ ︸

λij

i+ 1 . . . i+ 1
︸ ︷︷ ︸

λij

. . . . . . j . . . j
︸ ︷︷ ︸

λij

,

and
w = wn,nwn−1,n−1wn−1,n . . . . . . w1,1w1,2 . . . w1,n.

Then ℘(w) = λ = κ(w). In particular,
℘−1(λ) ∩ κ−1(λ) 6= ∅.



From the example above
The graph G(A2) with σ1 = red, σ2 = green.

(0,0,0)

(1,0,0) (0,0,1)

(2,0,0) (1,0,1) (0,1,0) (0,0,2)

(3,0,0) (2,0,1) (1,0,2) (1,1,0) (0,1,1) (0,0,3)

(4,0,0) (3,0,1) (2,0,2) (1,0,3) (2,1,0) (1,1,1) (0,2,0) (0,1,2) (0,0,4)



From the example above
The graph G(A2) ∩ C(A2):

(0,0,0)

(1,0,0) (0,0,1)

(2,0,0) (1,0,1) (0,1,0) (0,0,2)

(3,0,0) (2,0,1) (1,0,2) (1,1,0) (0,1,1) (0,0,3)

(4,0,0) (3,0,1) (2,0,2) (1,0,3) (2,1,0) (1,1,1) (0,2,0) (0,1,2) (0,0,4)



From the example above
The graph C(A2) with τ1 = red, τ2 = green.

(0,0,0)

(1,0,0) (0,0,1)

(2,0,0) (1,0,1) (0,1,0) (0,0,2)

(3,0,0) (2,0,1) (1,0,2) (1,1,0) (0,1,1) (0,0,3)

(4,0,0) (3,0,1) (2,0,2) (1,0,3) (2,1,0) (1,1,1) (0,2,0) (0,1,2) (0,0,4)



A Counterexample
However, the theorem fails for cyclic quivers.

Let Q be the cyclic quiver ∆3.
Let M(λ) = S1 ⊕ S1[2]⊕ S1[3]⊕ S2[2]⊕ S3[3].

Then ℘−1(λ) = {1322133222.}
But κ−1(λ) is given by

12231213232, 12231213222, 12231231232,

12231231322, 12232123232, 12232123222,

12232131232, 12232131322, 12321213232,

12321213222, 12321231232, 12321231322.

Hence we have ℘−1(λ) ∩ κ−1(λ) = ∅.



Remark
•• Although the common word parametrization fails

for cyclic quivers, it is natural to expect that the
same result holds for all Dynkin quivers.

• Using the theory of Frobenius morphisms and
module twisting on representations of quivers
with automorphisms, we can establish a similar
result for type B.

• E.g., consider the quiver:

C

D
E

F
G

H
I

J
K



Remark
• Although the common word parametrization fails

for cyclic quivers, it is natural to expect that the
same result holds for all Dynkin quivers.

• Using the theory of Frobenius morphisms and
module twisting on representations of quivers
with automorphisms, we can establish a similar
result for type B.

• E.g., consider the quiver with automorphism.:

L

M
N

O
P

Q
R

S
T



Frobenius maps
Let Fq be a finite field of q elements and let k = Fq be
its algebraic closure.
• A Frobenius map on a vector space over k is an

abelian group automorphism F : V → V
satisfying
(1) F (λv) = λqF (v) for all v ∈ V and λ ∈ k;

(2) for any v ∈ V , F n(v) = v for some n > 0.



q-twists of vector spaces
Let f be the field automorphism

f : k → k;λ 7→ λq.
• For a k-space V ,

let V (1) = V ⊗f k with λv ⊗ 1 = v ⊗ λq.

• We may identify V (1) as V with a twisted scalar
multiplication λ ¦ v = q

√
λ v.

• Let τV : V → V (1) be the Fq-linear isomorphism
sending v to v ⊗ 1.

• Clearly, a map F : V → V is a Frobenius map iff
F ◦ τ−1V : V (1) → V is a k-linear isomorphism.



Algebras with Fr. morphisms
• A Frobenius morphism on a k-algebra A (with 1)

is a Frobenius map F = FA on the underlying
vector space satisfying F (ab) = F (a)F (b) for all
a, b ∈ A.

• If M is an A-module, then we call a Frobenius
map FM on the space M a module Frobenius
map (relative to FA) if FM(am) = F (a)FM(m)
for all a ∈ A and m ∈M .

• In this case, the fixed point space
AF = {a ∈ A | F (a) = a} is an Fq-algebra;
while MFM is naturally an AF -module.



Module twisting
Let A be a f.d. k-algebra with Fr. morphism F .
•• Let M be an A-module defined by the k-algebra

homomorphism π : A→ Endk(M),

and let FM be a Frobenius map on M .

Define an A-module structure on M (1) by
π[1](a) = τM ◦ π(F−1(a)) ◦ τ−1M , ∀a ∈ A.

Denote this module by M [1] and call it the
Frobenius twist of M .



Module twisting
Let A be a f.d. k-algebra with Fr. morphism F .
•• Let M be an A-module defined by the k-algebra

homomorphism π : A→ Endk(M),

and let FM be a Frobenius map on M .
Define a new A-module structure on M by

π[FM ](a) = FM ◦ π(F−1(a)) ◦ F−1M , ∀a ∈ A.
Denote this module by M [FM ] and call it the
FM -twist of M .



Module twisting
Let A be a f.d. k-algebra with Fr. morphism F .
•• Let M be an A-module defined by the k-algebra

homomorphism π : A→ Endk(M),

and let FM be a Frobenius map on M .

• We have A-module isomorphism
FM ◦ τ−1M : M [1] →M [FM ].



F -stable modules
• An A-module is called F -stable if M ∼= M [1].
• An A-module is called F -periodic if M ∼= M [r]

for some r > 1.
• Let p(M) = pF (M) be the minimal number r

satisfying M ∼= M [r]. We call it the F -period of
M .

Lemma
M ∼= M [r] iff there exists a Fr. map FM on M
such that F r

M is a module Fr. map (wrt F r).
• Thus, if M is F -stable, then MFM is an
AF -module for some Fr. map FM on M .



Frobenius twist functor
• If f : M → N is an A-module homomorphism,

then the k-linear map
f (1) = f ⊗ 1 : M (1) → N (1) becomes an
A-module homomorphism f [1] : M [1] → N [1].

• We obtain a functor
( )[1] = ( )

[1]
A-mod : A-mod→ A-mod.

• A-modF whose objects are F -stable A-modules
M with a fixed isomorphism ϕM : M [1] ∼→M
and whose morphisms are compatible with the
isomorphisms ϕM .

Theorem
There is a cat. equivalence AF -mod ∼= A-modF .



Quivers with automorphisms
Let Q be a quiver with automorphism σ. Then
• (Q, σ) gives rise to a valued quiver.
• σ induces a Fr. morphism on A = kQ

F = FQ,σ;q : A→ A;
∑

s xsps 7→
∑

s x
q
sσ(ps)

Theorem
The representation category of an Fq-species is
equivalent to AF -mod for some A and F .



Induced automorphisms on G, C

Two observations:
• If M,N are F -stable, then so is M ∗N .

Thus, the Fr. twist functor induces an
automorphism on the generic ext. graph G.

• The structure constants for the Hall algebra is
invariant for Fr. twisting.
Thus, by Reineke’s result, the Fr. twist functor
induces an automorphism on the crystal graph C.

• We may “fold" these graphs to obtain a common
word parametrization for a non-simply case from
a simply-laced case.
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