Linear quivers, generic extensions and Kashiwara operators

Jie Du
(University of New South Wales)

6th International Conference on
Representation theory of Algebraic Groups and
Quantum Groups
Nagoya University, 12-17 June, 2006 (Joint work with B. Deng and G. Zhang)

The crystal graph $C\left(A_{2}\right)$

$\kappa: \operatorname{Path}_{0}(\mathrm{C}) \rightarrow \Lambda ; p \mapsto$ finish vertex E.g., $\kappa\left(2^{2} 12\right)=(0,1,2)$ with $1=$ red and $2=$ green.

The Problem

Let Ω be the set of all words on the alphabet $\{1,2, \ldots, n\}$. Then we obtain a map

$$
\kappa: \Omega \rightarrow \Lambda .
$$

We shall call it the Kashiwara map.

- representation theoretic interpretation
- better understanding of crystal graphs
- word parametrization of the canonical basis

It seems hard to understand the map.

Quivers and path algebras

- Let $Q=\left(Q_{0}, Q_{1}\right)=\left(I, Q_{1}\right)$ be a quiver.

If $\rho \in Q_{1}$ is an arrow from tail i to head j, we write $h(\rho)$ for j and $t(\rho)$ for i.

- A vertex $i \in I$ is called a sink (resp. source) if there is no arrow ρ with $t(\rho)=i$ (resp. $h(\rho)=i$).
- Let $k Q$ be the path algebra of Q over a field k.
E.g., if Q is the quiver $\underset{1}{\longrightarrow} \xrightarrow{\rightarrow}$ then

$$
k Q \cong\left(\begin{array}{ccc}
k & k & k \\
0 & k & k \\
0 & 0 & k
\end{array}\right)
$$

Quiver representations

- A representation $V=\left(V_{i}, V_{\rho}\right)$ of Q over k consists of
a set of f . d. k-vector spaces $V_{i}, i \in I$, and a set of linear maps $V_{\rho}: V_{t(\rho)} \rightarrow V_{h(\rho)}, \rho \in Q_{1}$.

We may identify V as a (left) $k Q$-module.

- Call $\operatorname{dim} V:=\left(\operatorname{dim}_{k} V_{1}, \ldots, \operatorname{dim}_{k} V_{n}\right)$ the dimension vector of V.
- Let \mathcal{M} be the set of isoclasses of nilpotent representations of Q.

Representation varieties $(k=\bar{k})$

- Fix $\mathbf{d}=\left(d_{i}\right)_{i} \in \mathbb{N}^{n}$ and define the affine space

$$
R(\mathbf{d}):=\prod_{\rho \in Q_{1}} \operatorname{Hom}_{k}\left(k^{d_{t(\rho)}}, k^{d_{h(\rho)}}\right) .
$$

Thus, a point $x=\left(x_{\rho}\right)_{\rho}$ of $R(\mathbf{d})$ determines a representation $V(x)$ of Q.

- The algebraic group $G L(\mathbf{d})=\prod_{i=1}^{n} G L_{d_{i}}(k)$ acts on $R(\mathbf{d})$ by $\left(g_{i}\right)_{i} \cdot\left(x_{\rho}\right)_{\rho}=\left(g_{h(\rho)} x_{\rho} g_{t(\rho)}^{-1}\right)_{\rho}$.
- There is a bijection:
$\{G L(\mathrm{~d})$-orbits $\} \longleftrightarrow$ \{isoclasses in $\left.\mathcal{M}_{\mathrm{d}}\right\}$.

Dim of orbits and the poset \mathcal{M}

- The stabilizer $G L(\mathbf{d})_{x}=\{g \in G L(\mathbf{d}) \mid g x=x\}$ of x is the group of automorphisms on $M:=V(x)$ which is Zariski-open in $\operatorname{End}_{k Q}(M)$ and has dimension equal to $\operatorname{dim}_{\operatorname{End}_{k Q}}(M)$. Hence the orbit \mathcal{O}_{M} of M has dimension $\operatorname{dim} \mathcal{O}_{M}=\operatorname{dim} G L(\mathbf{d})-\operatorname{dim} \operatorname{End}_{k Q}(M)$.
- For two representations M, N of Q, define $[N] \leqslant[M]$ (or simply $N \leqslant M$) iff $\mathcal{O}_{N} \subseteq \overline{\mathcal{O}}_{M}$, the closure of \mathcal{O}_{M}.
- This order is opposite to the degeneration order which is independent of k.

Dynkin quivers

- If the underlying graph of Q is a Dynkin graph, then, by Gabriel's Theorem, there is a bijection $\operatorname{ind}(Q) \longleftrightarrow \Phi^{+}(Q)$.
- This induces a bijection from Λ to \mathcal{M}, where

$$
\Lambda=\left\{\lambda: \Phi^{+} \longrightarrow \mathbb{N}\right\}
$$

sending every $\lambda \in \Lambda$ to

$$
M(\lambda)=M_{k}(\lambda):=\bigoplus_{\alpha \in \Phi^{+}} \lambda(\alpha) M_{k}(\alpha)
$$

- Thus, we obtain a poset (Λ, \leqslant).

Cyclic quivers

- If Q is the cyclic quiver

then, for each integer $l \geqslant 1$, there is a unique (up to isomorphism) indecomposable nilpotent representation $S_{i}[l]$ of length l with top S_{i}.
- Thus, we obtain a bijection from Λ to \mathcal{M}, where $\Lambda=\left\{\lambda: I \times \mathbb{Z}_{+} \longrightarrow \mathbb{N} \mid \operatorname{supp}(\lambda)\right.$ is finite $\}$, sending every $\lambda \in \Lambda$ to

$$
M(\lambda):=\bigoplus_{i \in I, l \geqslant 1} \lambda_{i, l} S_{i}[l] .
$$

Generic extensions

From now on, we assume that
Q is a Dynkin or cyclic quiver.

- Given $[M],[N] \in \mathcal{M}$, consider the extensions

$$
0 \longrightarrow N \longrightarrow E \longrightarrow M \longrightarrow 0
$$

of M by N.
Reineke proved that the one with $\operatorname{dim} \mathcal{O}_{E}$ maximal is a unique (up to isomorphism).

- We call E the generic extension of M by N, denoted by $M * N$.

The monoid \mathcal{M}

- Define operation $[M] *[N]=[M * N]$ on \mathcal{M}. It is associative. Thus, $(\mathcal{M}, *)$ is a monoid with identity $1=[0]$.
- If Q is a Dynkin quiver, then \mathcal{M} is generated by simples $\left[S_{i}\right], i \in I$.
- If Q is a cyclic quiver, then the simples $\left[S_{i}\right]$, $i \in I$, generate a proper submonoid \mathcal{M}_{c}, which consists of aperiodic modules.

The generic extension map

- Let Ω be the set of all words on the alphabet $I=\{1,2, \ldots, n\}$.
For $w=i_{1} i_{2} \cdots i_{m} \in \Omega$, let $\wp(w) \in \Lambda$ be the element defined by

$$
\left[S_{i_{1}}\right] * \cdots *\left[S_{i_{m}}\right]=[M(\wp(w))] .
$$

Thus, we obtain a monoid homomorphism

$$
\wp: \Omega \longrightarrow \Lambda, w \longmapsto \wp(w),
$$

- Call \wp the generic extension map.
- If Q is a Dynkin quiver, then \wp is surjective.
- If Q is a cyclic quiver, then \wp is not surjective with $\operatorname{Im} \wp=\Lambda^{a}$, the set of all aperiodic elements.

The generic extension graph G

- For each $i \in I$, there is a map

$$
\sigma_{i}: \Lambda \longrightarrow \Lambda ; \lambda \longmapsto \sigma_{i} \lambda
$$

defined by $M\left(\sigma_{i} \lambda\right) \cong S_{i} * M(\lambda)$.
Clearly, for each $w=i_{1} i_{2} \ldots i_{m}$, we have

$$
\wp(w)=\sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{m}}(0)
$$

where 0 is the zero function.

- The generic extension graph associated to Q is the directed graph G with

$$
\text { vertices: } \lambda \in \Lambda \text {, }
$$

arrows: $\lambda \xrightarrow{i} \mu$,
where $\lambda, \mu \in \Lambda$ and $\sigma_{i} \lambda=\mu$ for some $i \in I$.

Hall polynomials

- Ringel proved that, for $\lambda, \mu_{1}, \ldots, \mu_{m}$ in Λ, there is a polynomial $\varphi_{\mu_{1}, \ldots, \mu_{m}}^{\lambda}(T) \in \mathbb{Z}[T]$ such that

$$
\varphi_{\mu_{1}, \ldots, \mu_{m}}^{\lambda}\left(q_{k}\right)=F_{M_{k}\left(\mu_{1}\right), \ldots, M_{k}\left(\mu_{m}\right)}^{M_{k}(\lambda)}
$$

for any finite field k of q_{k} elements
Here $F_{N_{1}, \ldots, N_{m}}^{M}$ denotes the number of filtrations

$$
M=M_{0} \supset M_{1} \supset \cdots \supset M_{m-1} \supset M_{m}=0
$$

such that $M_{s-1} / M_{s} \cong N_{s}$ for all $1 \leqslant s \leqslant m$.

- These polynomials are called Hall polynomials.

Ringel-Hall algebras

$$
\text { Let } \mathscr{Z}=\mathbb{Z}\left[v, v^{-1}\right] \text {. }
$$

- The (twisted generic) Ringel-Hall algebra $\mathcal{H}_{v}(Q)$ of Q is the free \mathscr{Z}-module having basis

$$
\left\{u_{\lambda}=u_{[M(\lambda)]} \mid \lambda \in \Lambda\right\}
$$

and satisfying the mult' n rules

$$
u_{\mu} u_{\nu}=v^{\varepsilon(\mu, \nu)} \sum_{\lambda \in \Lambda} \varphi_{\mu, \nu}^{\lambda}\left(v^{2}\right) u_{\lambda} .
$$

- Here

$$
\begin{aligned}
\varepsilon(\mu, \nu)= & \operatorname{dim}_{k} \operatorname{Hom}_{k Q}(M(\mu), M(\nu)) \\
& -\operatorname{dim}_{k} \operatorname{Ext}_{k Q}^{1}(M(\mu), M(\nu))
\end{aligned}
$$

is the Euler form associated to the quiver Q.

Quantum enveloping algebras

- Let U be the QEA over $\mathbb{Q}(v)$ associated to Q with generators $E_{i}, F_{i}, K_{i}^{ \pm}, i \in I$.
- Let U^{+}be the subalgebra of U generated by E_{i}.
- The Lusztig integral form U^{+}is the \mathscr{Z}-subalgebra of U^{+}generated by divided powers $E_{i}^{(m)}(i \in I, m \geqslant 1)$.
- (Ringel) U^{+}is isomorphic to the Ringel-Hall algebra \mathcal{H} (resp. \mathcal{C}) via $E_{i}^{(m)} \mapsto u_{i}^{(m)}$, if Q is Dynkin (resp. cyclic).

PBW type bases

Let $\tilde{u}_{\lambda}=v^{-\operatorname{dim} M(\lambda)+\operatorname{dim} \operatorname{End}(M(\lambda))} u_{\lambda} \in U^{+}$.

- If Q is a Dynkin quiver, then $\left\{E_{\lambda}=\tilde{u}_{\lambda}\right\}_{\lambda \in \Lambda}$ is a PBW type basis, which
(1) coincides with Lusztig's one defined by braid group actions;
(2) is used in the construction of the canonical basis.
- If Q is a cyclic quiver, a similar basis $\left\{E_{\lambda}\right\}_{\lambda \in \Lambda^{a}}$ can be constructed in the form (D-D-Xiao) $E_{\lambda}=\tilde{u}_{\lambda}+$ (lin comb of $\tilde{u}_{\mu}, \mu \notin \Lambda^{a}$).
- Lin-Xiao-Zhang, (Hubery), Beck-Nakajima

The SMB property

Theorem (Deng-Du)
For each $w=i_{1} i_{2} \cdots i_{m} \in \Omega$, define a monomial

$$
E_{w}=E_{i_{1}} E_{i_{2}} \cdots E_{i_{m}} \in \mathbf{U}^{+} .
$$

Let Q be a Dynkin quiver (resp. a cyclic quiver). For each $\lambda \in \Lambda$ (resp. Λ^{a}), choose an arbitrary word $w_{\lambda} \in \wp^{-1}(\lambda)$. Then
(1) the set $\left\{E_{w_{\lambda}} \mid \lambda \in \Lambda\left(\right.\right.$ resp. $\left.\left.\Lambda^{a}\right)\right\}$ is a $\mathbb{Q}(v)$-basis of U^{+};
(2) if all w_{λ} are distinguished, then $\left\{E^{\left(w_{\lambda}\right)} \mid \lambda \in \Lambda\left(\right.\right.$ resp. $\left.\left.\Lambda^{a}\right)\right\}$ is a \mathscr{Z}-basis of U^{+}.

Canonical bases (Lusztig)

- For each $\lambda \in \Lambda$, there is a unique element

$$
\mathfrak{b}_{\lambda}=E_{\lambda}+\sum_{\mu<\lambda} p_{\lambda, \mu} E_{\mu} \in U^{+}
$$

with all $p_{\lambda, \mu} \in v^{-1} \mathbb{Z}\left[v^{-1}\right]$ and $\overline{\mathfrak{b}}_{\lambda}=\mathfrak{b}_{\lambda}$, where ${ }^{-}$is the \mathbb{Z}-algebra involution
${ }^{-}: U^{+} \longrightarrow U^{+} ; E_{i}^{(m)} \longmapsto E_{i}^{(m)}, v \longmapsto v^{-1}$.

- If Q is a Dynkin quiver, then $B=\left\{\mathfrak{b}_{\lambda} \mid \lambda \in \Lambda\right\}$ is a \mathscr{Z}-basis of U^{+}.
- If Q is a cyclic quiver, then $\mathbf{B}=\left\{\mathfrak{b}_{\pi} \mid \pi \in \Lambda^{a}\right\}$ is a \mathscr{Z}-basis of U^{+}

Kashiwara operators

- Each $x \in \mathrm{U}^{+}$can be written uniquely in the form

$$
x=\sum_{m \geqslant 0} E_{i}^{(m)} x_{m}
$$

where $x_{m} \in \mathbf{U}^{+}$satisfy $F_{i} x_{m}-x_{m} F_{i} \in K_{i} \mathbf{U}^{+}$ and $x_{m}=0$ for $m \gg 0$.

- The Kashiwara operator

$$
\tilde{E}_{i}: \mathrm{U}^{+} \rightarrow \mathrm{U}^{+}
$$

is defined by

$$
\tilde{E}_{i}(x)=\sum_{m \geqslant 0} E_{i}^{(m+1)} x_{m} .
$$

The Kashiwara map κ

Let

$$
\mathscr{A}_{\infty}=\left\{f(v) \in \mathbb{Q}(v) \mid f\left(v^{-1}\right) \text { regular at } v=0\right\} .
$$

- Let \mathscr{L} be the \mathscr{A}_{∞}-submodule of U^{+}generated by

$$
e_{w}=\tilde{E}_{i_{1}} \tilde{E}_{i_{2}} \cdots \tilde{E}_{i_{m}} \cdot 1
$$

for all words $w=i_{1} i_{2} \cdots i_{m} \in \Omega$.

- Kashiwara tells us:

$$
B=\left\{e_{w}+v^{-1} \mathscr{L} \mid q \in \Omega\right\}
$$

is a \mathbb{Q}-basis for $\mathscr{L} / v^{-1} \mathscr{L}$, from which the global crystal basis is constructed.

- Thus, for each word $w=i_{1} i_{2} \ldots i_{m}$, there is a unique $\kappa(w) \in \Lambda$ s. t.

$$
\tilde{E}_{i_{1}} \tilde{E}_{i_{2}} \cdots \tilde{E}_{i_{m}} \cdot 1 \equiv \mathfrak{b}_{k(w)}\left(\bmod v^{-1} \mathscr{L}\right) .
$$

The crystal graph C

- For each $i \in I$, there is a map

$$
\begin{gathered}
\tau_{i}: \Lambda \longrightarrow \Lambda ; \lambda \longmapsto \tau_{i} \lambda \text { define by } \\
\tilde{E}_{i}\left(\mathfrak{b}_{\lambda}\right) \equiv \mathfrak{b}_{\tau_{i} \lambda}\left(\bmod v^{-1} \mathscr{L}\right) .
\end{gathered}
$$

- We have

$$
\kappa(w)=\tau_{i_{1}} \tau_{i_{2}} \cdots \tau_{i_{m}}(0), \forall w=i_{1} i_{2} \ldots i_{m} .
$$

- The crystal graph associated to Q is the directed graph C with
vertices: $\lambda \in \Lambda$,
arrows: $\lambda \xrightarrow{i} \mu$, where $\lambda, \mu \in \Lambda$ and $\tau_{i} \lambda=\mu$ for some $i \in I$.

Word parametrization

- The maps \wp and κ are different (e.g., not both are monoid homom), but can be used to parameterize the canonical (or crystal) bases.
For each $\lambda \in \Lambda$, choose

$$
y_{\lambda} \in \wp^{-1}(\lambda) \text { and } w_{\lambda} \in \kappa^{-1}(\lambda) .
$$

Both sets $\left\{y_{\lambda}\right\}_{\lambda \in \Lambda}$ and $\left\{w_{\lambda}\right\}_{\lambda \in \Lambda}$ give two parametrizations of the canonical basis.
Question: Can the two word parametrizations be made the same?

In other words, can we prove that $\wp^{-1}(\lambda) \cap \kappa^{-1}(\lambda) \neq \emptyset$ for all $\lambda \in \Lambda$?

A comparison of σ_{i} and τ_{i}

Let Q be a Dynkin quiver.

- (Lusztig) If i is a sink of Q, then

$$
\tau_{i}=\sigma_{i}: \Lambda \rightarrow \Lambda .
$$

- In general, write $E_{i} E_{\lambda}=\sum_{\mu} f_{i, \lambda ; \mu} E_{\mu}$. Then (1) $f_{i, \lambda ; \mu} \neq 0 \Longrightarrow M(\mu) \leqslant M\left(\sigma_{i} \lambda\right)$. (2) (Reineke) $\tau_{i} \lambda=\mu \Longleftrightarrow f_{i, \lambda ; \mu} \neq 0$ and $\operatorname{deg}^{+} f_{i, \lambda ; \mu}=a_{i}(\lambda) \geqslant a_{i}(\mu)-1\left(Q \neq E_{8}\right)$, where

$$
a_{i}(\lambda):=\max _{\mu} \operatorname{deg}^{+} f_{i, \lambda ; \mu} .
$$

- Thus, combining (1) and (2) and . . . yields $\kappa(w) \leqslant \wp(w)$ for all w.

The linear quiver case

For $\lambda=\left(\lambda_{s, t}\right) \in \Lambda$, let

$$
\begin{aligned}
& m_{\sigma}=\max \left\{j \mid \lambda_{i+1, j} \neq 0\right\} \\
& m_{\tau}=\min \left\{k| | s_{i k}=\max _{j} s_{i j}\right\},
\end{aligned}
$$

where $s_{i j}=\sum_{l \geqslant j} \lambda_{i, l}-\sum_{l \geqslant j+1} \lambda_{i+1, l}$.
Then we have
$\left(\sigma_{i} \lambda\right)_{s, t}= \begin{cases}\lambda_{s, t}+1 & \text { if }(s, t)=\left(i, m_{\sigma}\right), \\ \lambda_{s, t}-1 & \text { if }(s, t)=\left(i+1, m_{\sigma}\right), \\ \lambda_{s, t} & \text { otherwise. }\end{cases}$

The linear quiver case

For $\lambda=\left(\lambda_{s, t}\right) \in \Lambda$, let

$$
\begin{aligned}
& m_{\sigma}=\max \left\{j \mid \lambda_{i+1, j} \neq 0\right\} \\
& m_{\tau}=\min \left\{k| | s_{i k}=\max _{j} s_{i j}\right\},
\end{aligned}
$$

where $s_{i j}=\sum_{l \geqslant j} \lambda_{i, l}-\sum_{l \geqslant j+1} \lambda_{i+1, l}$.
Then we have
$\left(\tau_{i} \lambda\right)_{s, t}= \begin{cases}\lambda_{s, t}+1 & \text { if }(s, t)=\left(i, m_{\tau}\right), \\ \lambda_{s, t}-1 & \text { if }(s, t)=\left(i+1, m_{\tau}\right), \\ \lambda_{s, t} & \text { otherwise. }\end{cases}$

Example

- Let Q be the quiver

Then 2 is a sink and so $\sigma_{2}=\tau_{2}$.

- Write $\lambda \in \Lambda$ as the triple (a, b, c), if $a=\lambda\left(\alpha_{1}\right), b=\lambda\left(\alpha_{1}+\alpha_{2}\right)$, and $c=\lambda\left(\alpha_{2}\right)$.
- Thus, we have

$$
\begin{aligned}
& \sigma_{1}(a, b, c)= \begin{cases}(a+1, b, c) & \text { if } c=0, \\
(a, b+1, c-1) & \text { if } c \geqslant 1\end{cases} \\
& \text { and } \\
& \tau_{1}(a, b, c)= \begin{cases}(a+1, b, c) & \text { if } a \geqslant c, \\
(a, b+1, c-1) & \text { if } a<c .\end{cases}
\end{aligned}
$$

The graph $\mathrm{G}\left(\mathrm{A}_{2}\right)$ and $\mathrm{C}\left(\mathrm{A}_{2}\right)$

The graph $\mathrm{G}\left(\mathrm{A}_{2}\right)$ with $\sigma_{1}=$ red, $\sigma_{2}=$ green.

The graph $G\left(A_{2}\right)$ and $C\left(A_{2}\right)$

The graph $\mathrm{C}\left(\mathrm{A}_{2}\right)$ with $\tau_{1}=$ red, $\tau_{2}=$ green.

Good modules

- $\Phi^{+}(Q)=\{(i, j) \mid 1 \leqslant i \leqslant j \leqslant n\}$.
- Let $M_{i, j}$ be the indecomposable whose top and socle are isomorphic to S_{i} and S_{j}, respectively.
- $\lambda=\left(\lambda_{s, t}\right) \in \Lambda$ is said to be good at i if there exists $j>i$ such that $M(\lambda) \cong\left(\bigoplus_{s=j}^{n} \lambda_{i, s} M_{i, s}\right) \oplus \lambda_{i+1, j} M_{i+1, j} \oplus N$, where the top of N contains no S_{i} or S_{i+1}.
Lemma
If λ is good at i, then $\sigma_{i} \lambda=\tau_{i} \lambda$.

Theorem (D-D-Z)

Let Q be a linear quiver.
Let $\lambda \in \Lambda$, and define, for $1 \leqslant i \leqslant j \leqslant n$,

$$
w_{i, j}=\underbrace{i \ldots i}_{\lambda_{i j}} \underbrace{i+1 \ldots i+1}_{\lambda_{i j}} \ldots \ldots \underbrace{j \ldots j}_{\lambda_{i j}},
$$

and
$w=w_{n, n} w_{n-1, n-1} w_{n-1, n} \ldots \ldots w_{1,1} w_{1,2} \ldots w_{1, n}$.
Then $\wp(w)=\lambda=\kappa(w)$. In particular,

$$
\wp^{-1}(\lambda) \cap \kappa^{-1}(\lambda) \neq \emptyset
$$

From the example above

The graph $\mathrm{G}\left(\mathrm{A}_{2}\right)$ with $\sigma_{1}=$ red, $\sigma_{2}=$ green.

From the example above

 The graph $G\left(A_{2}\right) \cap C\left(A_{2}\right)$:

From the example above

The graph $\mathrm{C}\left(\mathrm{A}_{2}\right)$ with $\tau_{1}=$ red, $\tau_{2}=$ green.

A Counterexample

However, the theorem fails for cyclic quivers.
Let Q be the cyclic quiver Δ_{3}.
Let $M(\lambda)=S_{1} \oplus S_{1}[2] \oplus S_{1}[3] \oplus S_{2}[2] \oplus S_{3}[3]$.
Then

$$
\wp^{-1}(\lambda)=\left\{132^{2} 1^{3} 3^{2} 2^{2} .\right\}
$$

But $\kappa^{-1}(\lambda)$ is given by

$$
\begin{aligned}
& 1^{2} 231213232,1^{2} 231213^{2} 2^{2}, 1^{2} 231231232, \\
& 1^{2} 23123132^{2}, 1^{2} 2321^{2} 3232,1^{2} 2321^{2} 3^{2} 2^{2}, \\
& 1^{2} 232131232,1^{2} 23213132^{2}, 1^{2} 321213232, \\
& 1^{2} 321213^{2} 2^{2}, 1^{2} 321231232,1^{2} 32123132^{2} .
\end{aligned}
$$

Hence we have $\wp^{-1}(\lambda) \cap \kappa^{-1}(\lambda)=\emptyset$.

Remark

- Although the common word parametrization fails for cyclic quivers, it is natural to expect that the same result holds for all Dynkin quivers.
- Using the theory of Frobenius morphisms and module twisting on representations of quivers with automorphisms, we can establish a similar result for type B.
- E.g., consider the quiver:

Remark

- Although the common word parametrization fails for cyclic quivers, it is natural to expect that the same result holds for all Dynkin quivers.
- Using the theory of Frobenius morphisms and module twisting on representations of quivers with automorphisms, we can establish a similar result for type B.
- E.g., consider the quiver with automorphism.:

Frobenius maps

Let \mathbb{F}_{q} be a finite field of q elements and let $k=\overline{\mathbb{F}}_{q}$ be its algebraic closure.

- A Frobenius map on a vector space over k is an abelian group automorphism $F: V \rightarrow V$ satisfying
(1) $F(\lambda v)=\lambda^{q} F(v)$ for all $v \in V$ and $\lambda \in k$;
(2) for any $v \in V, F^{n}(v)=v$ for some $n>0$.

q-twists of vector spaces

Let f be the field automorphism

$$
f: k \rightarrow k ; \lambda \mapsto \lambda^{q} .
$$

- For a k-space V,

$$
\text { let } V^{(1)}=V \otimes_{f} k \text { with } \lambda v \otimes 1=v \otimes \lambda^{q} .
$$

- We may identify $V^{(1)}$ as V with a twisted scalar multiplication $\lambda: v=\sqrt[q]{\lambda} v$.
- Let $\tau_{V}: V \rightarrow V^{(1)}$ be the \mathbb{F}_{q}-linear isomorphism sending v to $v \otimes 1$.
- Clearly, a map $F: V \rightarrow V$ is a Frobenius map iff $F \circ \tau_{V}^{-1}: V^{(1)} \rightarrow V$ is a k-linear isomorphism.

Algebras with Fr. morphisms

- A Frobenius morphism on a k-algebra A (with 1) is a Frobenius map $F=F_{A}$ on the underlying vector space satisfying $F(a b)=F(a) F(b)$ for all $a, b \in A$.
- If M is an A-module, then we call a Frobenius map F_{M} on the space M a module Frobenius map (relative to $\left.F_{A}\right)$ if $F_{M}(a m)=F(a) F_{M}(m)$ for all $a \in A$ and $m \in M$.
- In this case, the fixed point space $A^{F}=\{a \in A \mid F(a)=a\}$ is an \mathbb{F}_{q}-algebra; while $M^{F_{M}}$ is naturally an A^{F}-module.

Module twisting

Let A be a f.d. k-algebra with Fr. morphism F.

- Let M be an A-module defined by the k-algebra homomorphism $\pi: A \rightarrow \operatorname{End}_{k}(M)$, and let F_{M} be a Frobenius map on M. Define an A-module structure on $M^{(1)}$ by

$$
\pi^{[1]}(a)=\tau_{M} \circ \pi\left(F^{-1}(a)\right) \circ \tau_{M}^{-1}, \forall a \in A .
$$

Denote this module by $M^{[1]}$ and call it the Frobenius twist of M.

Module twisting

Let A be a f.d. k-algebra with Fr. morphism F.

- Let M be an A-module defined by the k-algebra homomorphism $\pi: A \rightarrow \operatorname{End}_{k}(M)$, and let F_{M} be a Frobenius map on M. Define a new A-module structure on M by $\pi^{\left[F_{M}\right]}(a)=F_{M} \circ \pi\left(F^{-1}(a)\right) \circ F_{M}^{-1}, \forall a \in A$. Denote this module by $M^{\left[F_{M}\right]}$ and call it the $F_{M^{-}}$twist of M.

Module twisting

Let A be a f.d. k-algebra with Fr. morphism F.

- Let M be an A-module defined by the k-algebra homomorphism $\pi: A \rightarrow \operatorname{End}_{k}(M)$, and let F_{M} be a Frobenius map on M.
- We have A-module isomorphism

$$
F_{M} \circ \tau_{M}^{-1}: M^{[1]} \rightarrow M^{\left[F_{M}\right]} .
$$

F-stable modules

- An A-module is called F-stable if $M \cong M^{[1]}$.
- An A-module is called F-periodic if $M \cong M^{[r]}$ for some $r \geqslant 1$.
- Let $p(M)=p_{F}(M)$ be the minimal number r satisfying $M \cong M^{[r]}$. We call it the F-period of M.

Lemma
$M \cong M^{[r]}$ iff there exists a Fr. map F_{M} on M such that F_{M}^{r} is a module Fr. map (wrt F^{r}).

- Thus, if M is F-stable, then $M^{F_{M}}$ is an A^{F}-module for some Fr. map F_{M} on M.

Frobenius twist functor

- If $f: M \rightarrow N$ is an A-module homomorphism, then the k-linear map $f^{(1)}=f \otimes 1: M^{(1)} \rightarrow N^{(1)}$ becomes an A-module homomorphism $f^{[1]}: M^{[1]} \rightarrow N^{[1]}$.
- We obtain a functor ()$^{[1]}=()_{A-\text {-mod }}^{[1]}: A-\bmod \rightarrow A$-mod.
- A-mod ${ }^{F}$ whose objects are F-stable A-modules M with a fixed isomorphism $\varphi_{M}: M^{[1]} \xrightarrow{\sim} M$ and whose morphisms are compatible with the isomorphisms φ_{M}.
Theorem
There is a cat. equivalence $A^{F}-\bmod \cong A-\bmod ^{F}$.

Quivers with automorphisms

Let Q be a quiver with automorphism σ. Then

- (Q, σ) gives rise to a valued quiver.
- σ induces a Fr. morphism on $A=k Q$

$$
F=F_{Q, \sigma ; q}: A \rightarrow A ; \sum_{s} x_{s} p_{s} \mapsto \sum_{s} x_{s}^{q} \sigma\left(p_{s}\right)
$$

Theorem
The representation category of an \mathbb{F}_{q}-species is equivalent to A^{F}-mod for some A and F.

Induced automorphisms on G, C

Two observations:

- If M, N are F-stable, then so is $M * N$.

Thus, the Fr. twist functor induces an automorphism on the generic ext. graph G.

- The structure constants for the Hall algebra is invariant for Fr. twisting.
Thus, by Reineke's result, the Fr. twist functor induces an automorphism on the crystal graph C.
- We may "fold" these graphs to obtain a common word parametrization for a non-simply case from a simply-laced case.

References

[1] B. Deng and J. Du, Monomial bases of quantum affine $\mathfrak{s l} l_{n}$, Adv. Math. 191(2005) 276-304.
[2] B. Deng and J. Du, On bases of quantized enveloping algebras, Pacific J. Math. ???(2005).
[3] B. Deng and J. Du, Frobenius morphisms and Representation of Algebras, Trans. Amer. Math. Soc., 358(2006), 3591-3622.
[4] B. Deng and J. Du, Folding derived categories with Frobenius functors, JPAA (in press).
[5] B. Deng, J. Du, and G. Zhang, Linear quivers, Generic extensions and Kashiwara operators, in preparation.

