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Introduct ion

V.B. Lidskii [l] proved the following theorem, which in intuitive geo-
metrical terms establishes a connection between the eigenvalues of the sum
of two Hermitian matrices and the eigenvalues of the summands.

Let A and Β be Hermitian matrices of order n, and ϋΓ± (respectively Kz)
the convex hull of the set of vectors of the form1 {\j(B) + λ^·(Λ)}"
(respectively {\j(A) + Xjfe-(B)}?), where klt fc2, . . . , kn is an arbitrary
permutation of the numbers 1, 2, . . . . n. Then the vector {kj(A + Β)}1} is
in the intersection of Κχ and K2.

Also in [l] an analogous theorem was established for the eigenvalues
of the product of two positive definite matrices.2 This theorem was later
carried over to the case of unitary matrices by A. A. NudeΓ man and
P.A. Shvartsman [3]. (For the formulation of these two theorems see §2,3.)

In his paper [4] Ky Pan established (Theorem 1) a property of the
eigenvalues of an Hermitian matrix from which i t follows immediately that

1 {Xj(A)}% denotes the complete system of eigenvalues of A, numbered in
decreasing order.

2 As Lidskii mentions, the la t ter result had been obtained earlier by
I.M. Gel'fand and M. A. Naimark in the course of their investigations into the
theory of group representations. Proofs of both these theorems based on group-
theoretical methods are given in the paper [2] by P. A. Berezin and I.M.Gel'fand.
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Σ λ,·μ+β)< 2 M ^ ) + Σ Κ {Β) (* = 1,2, ...,η). (0.1)
3 = 1 3 = 1 3 = 1

Shortly afterwards [5] he proved this same inequality for the

singular values
1
 of arbitrary matrices A and B, while Horn [β] established

an analogous inequality for the singular values of the product of two

matrices (to be precise, they established these results for arbitrary com-

pletely continuous operators in Hilbert space).

Apparently no connections between Lidskii' s geometrical propositions

and inequalities of the type (0.1) were discovered at the time.

In 1955 Wielandt [7], with the help of minimax properties of the sums

of eigenvalues of Hermitian matrices which he had proved, established in

generalization of (0.1) that for any system of indices 1 ί ;Ί < J'J < ...

< Jk £
 n

Σ h(A + B) < Σ λ,· (Α)+ Σ h{B). (0.2)
P=l

 P
 p-i

 P
 j=l

He discovered that by a result of Birkhoff fe] (see Remark 1.1 below)
the inequalities (0.2) (together with those obtained from (0.2) by inter-
changing A and B) are equivalent to the above theorem of Lidskii.

One year later Amir-Moez, developing Wielandt' s method, obtained a
number of new inequalities for the eigenvalues of the sum of two Hermitian
matrices and the product of two positive definite matrices, and for the
singular values of sums and products of matrices. In particular, he proved
that for any systems of indices 1 ζ ii ζ ... £ ik g n and 1 £ j \ g . . .
4: jk £ η satisfying the conditions

& < n and iP+}P<n — k + p-{-1 (p = l, 2, ..., k),

the following inequality holds:

Σ λ™ ( ί > (A + B)< Σ λ™ ( i , (Α)+ Σ λ™ (3Ρ) (Β), (0.3)
ρ=1 ρ ρ=1 ρ ρ=1 ν

where

Zp = ip + / p - l 0> = l , 2, . . . , k)

and

p,/«(ip-O + l) (jo = 2, 3, . . . , A). (0.4)

I t i s easy to verify that for 1 ^ i^ < i2 < . . . < ife ^ η and
j p = 1 (p = 1, 2, . . . . k) the inequality (0.3) becomes (0.2). Pox fe = 1 on
the other hand (0.3) becomes the well-known inequality of H. Weyl [10]

(i + /<n+l), (0.5)

1 The singular values of a matrix A are the non-negative square roots of the
eigenvalues of the matrix A*A: sj (A) = (Xj (A*A))1/2 (; = 1, 2, ...,n).
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which was established as long ago as 1912 and seems to be the earliest
known relation connecting the eigenvalues of A, B, and A + B.

Unfortunately the general inequality (0.3) hardly admits of an
intuitive geometrical interpretation.

In [ll] some additions to the above-mentioned results were obtained,
and generalizations of some of them to the infinite-dimensional case.

Recently certain new connections between the eigenvalues of A, B, and
A + Β have been established in [12] and [13].* In Horn's paper [12] a
method i s indicated for obtaining new relations between the numbers
λ/(Λ), ^j(B), \j (A + B) (j = l, . . . , π) from known ones. By repeated
application of this method one can, in particular, arrive at the inequality
(0.2), starting from (0.1).

In the present paper the main results on connections between the
eigen- and singular values of the sum (product) of linear operators and
those of the summands (factors) are set forth, with complete proofs as far
as possible. Attention is paid principally to results that admit of a geo-
metrical formulation similar to that of Lidskii's theorem given above.

In § 2 a proof of Lidskii' s theorem is given which uses ideas from
Wielandt' s paper [7], but not his minimax property. In the same section
some propositions about the singular values of matrices, analogous to
Lidskii' s theorems, are proved.

As in Wielandt's paper, the main results are first established in the
form of certain inequalities between the eigenvalues (or singular values).
These are then put into geometrical form with the help of theorems on the
convex hulls of certain sets of vectors, which are proved for the finite-
dimensional case in § 1 and for the infinite-dimensional case in § 4.

The results of § 4 are based on the concept of a symmetric gauge
function due to J. von Neumann and R. Schatten, and on certain propositions
about such functions established in § 3.

In § 5 the results of § 2 are generalized to the case of completely
continuous operators in Hilbert space.

The author is grateful to I.Ts. Gokhberg for valuable discussions of
the questions considered here.

§1. Theorems on the convex hulls of the rearrangements
of a vector (finite-dimensional case)

Let/?71 be an ra-dimensional Euclidean space and β = {By}? an arbitrary
vector in B71. Denote by Δ (0) the convex hull of the set of vectors
obtained from 0 by all possible rearrangements of i t s coordinates, and by
Γ (Β) the convex hull of the set of all vectors of the form

toPik}?. (i.i)

where Zk = ± 1 (k = 1, 2 n) and j l t j 2 , . . . , η i s an arbitrary per-
mutation of the numbers 1, 2, . . . , n.

In the present section two auxiliary propositions about Δ (8) and T(R)
1 We mention that among the inequalities obtained in [13] there are some that are

new as compared with (0.3). We give one of them (for η = 5):
λ2 (Α + Β) + λ3 (Α + Β) + λί (Α + Β) < λ! (Α)+ λ3 {Α) + λ^ (Α) + λ1 (Β)+λ2 (Β)+Κ (Β).
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will be established. Their proofs are based on the following simple pro-
position, which constitutes a finite-dimensional analogue of the well-
known theorem of M. G. Krein and D P. Mil'man [14] on the extreme points of
a convex compact set.

1°. Every convex bounded closed set in Rn is the convex hull of the
set of its extreme points..1

For any vector α = ία,·}? (e Rn), denote by a* = iafiT the vector
obtained from α by rearranging i t s coordinates in non-increasing order.

Let α, β e if1. We shall write α-<-<β, i f

Σ Σ β ; ( = 1. 2 n). (1.2)
3=1 j=l

If α-<-< β and in addition there is equality in the last of the rela-
tions (1.2), i.e.

η η

2 aj= 2 β;,
3 = 1 3 = 1

then we shall write
 2
<z -< β.

THEOREM 1.1. If S € Ft", then a -< § if and only if α ε Δ (β).
PFOOF. It is easy to verify that the set D(&) of all vectors α for

which α-<β,ΐ3 convex, bounded, and closed. Therefore, by Proposition 1°,
it is sufficient to establish that a vector γ is an extreme point of D(B)
if and only if it can be obtained from θ by rearranging its coordinates.

Without loss of generality we suppose that Θ* = 8. since either both
or neither of the vectors γ and γ* are extreme points of D(B), and since
by 1° the set of extreme points of D(B) is not empty, it is sufficient to
prove that a vector γ e D(B) such that γ* = γ and γ Φ β is not an extreme
point of D(B). We now prove this assertion.

Denote by k the least index for which Yk Φ ̂ k, and by m the least
index such that m > k and

3 = 1 3 = 1

Obviously
t t

3 = 1 J 3 = 1

Also, i f k > l , then YJfe < @jfe < fife-i = Yfe-i, and i f m < n, then

Y» > BB ̂  β»+1 » Yni+l.
Choose ε > ο such that the following candidates are satisfied:

1 A point of a convex set Jli i s called an extreme point Of Μ if i t is not the mid-
point of any interval with end-points in M.

2 This notation i s borrowed from [15] and [16].
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(1.3)

(1.4)

(1.5)

(1.6)

Prom (1.4) and (1.5) i t follows that σ· = σ. Using this and (1.3) i t
i s easy to verify that σ e β(β). If γ& = γη, then δ is obtained from σ by
transposing i t s fe-th and m-th coordinates, and therefore belongs to Z)(0)
together with σ. if yk > ym, then using (1.6) i t i s not difficult to
verify that δ e Z)(8) . Since γ = (σ + δ)/2, σ / δ, and σ, δ ε Ζ)(β), i t
follows that γ is not an extreme point of i)(0), and the theorem i s proved.

EEMAEK 1.1. Theorem 1.1 seems to have been first established by Rado
[17]; his proof was based on a theorem about the separation of convex sets

by hyperplanes. However, as Horn [18] observed, i t can also be obtained by
combining earlier results of Hardy, Littlewood, and Polya ([15], p.49) and
Birkhoff [8]. These results are as follows. In [15] i t i s proved that the
condition α -< β is equivalent to α = MS, where Μ = ||m/fe||" i s a doubly
stochastic matrix, i . e . , nijk ^.0 (j, k = 1, 2 n) and

η τ>

Σ m A = Σ ™*ί = ! ( / = 1 , 2 n).
k=l fi=i

Birkhoff [8] established that a matrix Μ is doubly stochastic if and only

if M= 2 tjph w h e r e tj>O,^tj = i, and the Pi (j = l, . . . . s) are
J--1 3 = 1

permutation matrices, i.e., matrices in which in each row and in each

column one element is equal to one and all the others to zero. Since the

action of a permutation matrix on a vector is to permute its coordinates,

Theorem 1.1 follows immediately from these two results.

THEOREM 1.2. Tf β € If1, then for a vector a e Rn the condition

{|«>|}ϊ-«{|β;Ι}!ί (1-7)

is satisfied if and only if <X e Γ"(β).
PROOF. I t i s easy to verify that the set G(P) of all vectors α e fl"

for which (1.7) i s satisfied i s convex, bounded, and closed. Therefore by
Proposition 1° i t i s sufficient to prove that a vector γ i s an extreme
point of G(0) if and only if i t i s of the form (1.1).

Without loss of generality we may suppose that β ; $.0 (j = 1, 2 n)
and 0* = β. Since either both or neither of γ and any vector of the form

where ε^ = ± 1 and γ± γ η i s a permutation of 1, . . . . n, are extreme
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points of G(3), and since by 1° the set of extreme points of G(B) is not
empty, i t i s sufficient to establish that a vector γ e G(R) satisfying the
conditions yy » 0 (j = 1, 2 η), γ* = γ, and γ ^ β is not an extreme
point of G(8). We pass to the proof of this assertion.

Denote by k the least index for which γ^ Φ β&. Obviously, if k > l,
then Yfe < Bk 4 0fe-i = Yfe-i . Consider the two possible cases:

Choose ε > ο such

ε

3 = 1

that

<(Σ β,-
3 = 1

ε < γ*-ι

3 = 1

-ΣΥ;
3 = 1

— Yft,

0/2 (.

ecjiH Λ>1,

) , ( 1 . 8 )

( 1 . 9 )

and p u t

μ = {Υι. · · · . Yft-i. Y f t + ε , γ Α + 1 . . . . , Υη — ε }

τ = {γ 1 ( . . . , γ Α _ ! , Yft — ε , +}

Using (1.8) and (1.9) it is not difficult to verify that μ, τ e G(0).

Since γ = (μ + τ)/2 and μ / τ, γ is not an extreme point of G(8).

2) For some index m > k

Σγ, Σβ; ()
3 = 1 3 = 1

Let m be the least number >k for which (1.10) holds.
Since {y l t γ 2 Ym} -< {Bi, β2, . . . . β }̂ and these vectors are dis-

tinct, then, as was shown in the proof of Theorem 1.1, we can construct
vectors σ = {σ,·}? and* δ = ίδ^}? such that {γ!, γ 2 Ym} = (σ + δ)/2,
σ / δ, and

σ-<{β,, β,,...,?™}, δ-<{βι, β,. . · , β 4 · (1-11)

If π = re, then since σ, δ e G(8), we conclude that γ is not an extreme

point Of G(B). If m < n, then Y
m
 > 8

m
 ^ B

m + 1
 » Y

m +
i. Consequently if we

choose the number ε in the proof of Theorem 1.1 sufficiently small, we can

ensure that the vectors σ and δ also satisfy

Om>Ym+1, ^m > Ym+1· (L12)

Consider the vectors

σ = {0-4, .. ., σ,
η
, y

m+u
 . . ., y

n
) and δ = {δ!, . .., 6

m
, y

m+l
, . .., y

n
}.

Prom (1.11) and (1.12) it follows that σ, δ e G(B). Since Y= (σ + δ)/2

and σ ̂ /δ, γ is not an extreme point of G(B), and the theorem is proved.
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§2. The eigen- and singular values of the sum
and product of matrices

In what follows we shall not distinguish between a square matrix of
order η and the operator in η-dimensional unitary coordinate space ig

n

determined by it. If Λ is an Hermitian matrix of order n, we shall denote
by \(A) = {Xy(j4)}? the complete system of eigenvalues of A, numbered in
decreasing order and with multiplicities taken into account.

T H E O R E M 2.1 (Wielandt [7]). If A and Β are Hermitian matrices of
order η and C = A + B, then X(C) - X(B) < X(A).

PROOF. For η = l this is obvious; now suppose it true for η - 1.

Denote by cpy (respectively w
;
) the eigenvectors of the operator B(C)

in ig
u
 corresponding to the eigenvalues Xj(B) (Xj(O)) (7 = 1, 2 n).

Denote by 91 any (n - 1)-dimensional subspace of .<g
n
 containing the vectors

(pj (j = m + 1, .... n) and \\ij (j = 1, .... m - 1 ) , where m satisfies

Xm (C) - ληι (Β) = min (λ, (C) - λ,· (Β)). (2.1)

/* Λ Λ

Let Ρ be the orthogonal projector onto 9ΐ· in φ", and A, B, C the
operators induced in 9i by PA, PB, PC respectively.

A

As is known, the eigenvalues of A and A are connected by the
inequalities

and similarly for Β, Β and C, C.
Since 91 contains the vectors opy (j = m + 1 n) and

Ψ; (j = 1. . . . . m-1), the numbers Xj(B) (j = m + 1 n) are eigen-

values of 5, and the numbers Xj(C) (j = 1, . . . . m-1) eigenvalues of C.

Using (2.2) for Β, Β and C, C, we obtain

Prom these inequalities and the relations (2.2) for Β, Β and C, C i t
follows that

k} (C)-Xj φ) > l j (C) ~Xj(B) (/ = 1, . . . , m-1), (2.3)

λ, · (£)-λ;(£)>λ, · + 1 ( ί : )-λ, · + 1 (5) ( / = m , . . . , n - l ) . (2.4)

By the inductive hypothesis

and consequently

ft k

Σ (λ, ( C ) - λ , ( £ ) ) · < 2 λ, (A) (ft = l, 2, . . . , η - 1 ) . (2.5)
3=1 j = l

Since by (2.1)

(λη (C) - λη (5))* = Xm (C) - λη (Β),

i t follows from (2.2) - (2.5) that
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and since

we have

h

3 = 1

A.S. Markus

h

^ 3 = 1

SpC — Sp5 =

= 1, 2,..., n-l),

3 = 1 3 = 1

The theorem is now proved.

T H E O R E M 2.2 (Lidskii [l]). Let A and Β be Hermitian matrices of

order n, K
1
 the convex hull of the set of all vectors of the form

(2.6)

and K
2
 the convex hull of the set of all vectors of the form

h
.

where fe
±
 h^ is an arbitrary permutation of 1, ..., n. Tf C = A + B,

then the vector X(C) is in the intersection of K
±
 and K^.

PflOQF.Since, by Theorem 2.1. X(C) -λ(Β)^λ(Α), therefore by Theorem

1.1 the vector X(C) - λ(Β) is in the convex hull Δ(λ(Α)) of the set of all

vectors obtained by permuting the coordinates of λ(Α). Consequently

X(C) e K
it
 and since the matrices A and Β may be interchanged, X(C) e K

2
.

C O R O L L A R Y 2.1 (Lidskii [l]). If either

Xl(A)-Xn(A)<Kk(B)-%k+l(B) (A = l, 2 n-l) (2.7)

or

Xl(B)-Xn(B)<Xh(A)-Xh+l(A) (& = 1, 2 , . . . , n - l ) ,

then C has no repeated eigenvalues.
In fact, if for example (2.7) holds, then all points of the form (2.6),

and therefore also their convex hull Kit l ie in the half-space of B71

defined by the inequalities Xk - xk+i > 0 (k = 1, 2, . . . . n - l ) .
2 Let A be a complex matrix of order n. We shall denote by

s(A) = isjiA)}™ the complete system, arranged in decreasing order, of
singular numbers of A, i . e . , square roots of the eigenvalues of A*A, where
A* i s the Hermitian-conjugate matrix of A.

THEOREM 2.3 (L. Mirsky [16]). Tf A and Β are matrices of order η
and C = A + B, then

\ \ (2.8)

PBOOF. Denote by A the following Hermitian matrix of order 2n:

A* 0

It is easy to verify that the eigenvalues of A are the numbers
± SJ(A) (j = 1, 2. . . . . n).1

1 This remark is due to Wielandt.
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Applying Theorem 2.1 to A and to the similarly defined matrices Β and
C, we obtain

{Si (C) - Si ( B ) , ...,sn(C)-sn ( B ) , sn ( B ) -sn(C), ...,Sl (B) - st (C)} <

...,sn(A), -sn(A), . . . , -

Prom this (2.8) follows immediately.
T H E O R E M 2.4. Let A and Β be matrices of order n, and L

x
 (L

2
) the

convex hull of the set of all vectors of the form {SJ(B) + EJS^^A)}^

(respectively isj(A) + ê Sfe .(B)}^), where Ej = ± 1 and k
lt
 .... kn is an

arbitrary permutation of 1, ..., n. If C = A + B, then the vector s(C) is
in the intersection of L

±
 and L

2
.

PBOOF. Prom Theorems 2.3 and 1.2 it follows that s(C) - s(B) e V(s(A)).
Therefore s(C) e L

lt
 and since A and Β can be interchanged, s(C) e L

2
.

COROLLARY 2.2. Tf either

+ s2(A)<sk(B)-sh+l(B) (A = l, 2, . . . , » - ! ) (2.9)

or

Si
(B) + s

2
(B)<s

h
(A)-s

h+l
(A) (ft = l,2, ...,n-l), (2.10)

then all the numbers Sj(C) (j = 1 , .... n) are distinct.

3. We now formulate the theorems on the eigenvalues of the products
of positive definite and unitary matrices established in [l] and [3], and
we prove an analogous theorem on the singular values of the products of
matrices.

T H E O R E M 2.5 (Lidsbii [l]).
1
 Let A and Β be positive definite

matrices of order n, and M^ (M
2
) the convex hull of the set of all vectors

of the form {in λ
;
(β) + In λι .(Λ)}? (respectively (in \j(A) +ln ̂ kj(B)}^

where k-^ fen is an arbitrary permutation of 1, .... n. Tf C = AB,
then the vector

2
 {ln\j(C)}™ is in the intersection of Mi and M^.

If'U is a unitary matrix of order n, then we denote by Wfe(f7)
(fe = 1, .... n) the numbers defined by the conditions

1) {exp (ίω^ (t/))}" is the complete system of eigenvalues of U;

2) 2π: > ω^ϋ) >... >Uk(U) > 0.
T H E O R E M 2.6 (Nudel'man and Shvartsman [3]). Let U and V be unitary

matrices of order η for which

Tf Ni (N2) is the convex hull of the set of all vectors of the form

{uj(U) + ukj(V)}? (respectively {ω,·(V) + UkjW)}?), where kit . . . . kn is

an arbitrary permutation of 1 n, and if W = UV, then the vector
{WjiW)}^ is in the intersection of N± and N2.

THEOREM 2.7. Let A and Β be non-degenerate matrices of order n, and
Fi (^2) the convex hull of the set of all vectors of the form

1 A result equivalent to Theorem 2.5 was obtained later by Amir-Moe'z (fg], Theorem
3.12) in the form of certain Inequalities between the numbers λ.,-(.4), λ; (Β) and
Xj (C) but apparently he did not notice the equivalence of the theorems.

2 Although C is positive definite only when AB = BA, the eigenvalues of C are
always positive. We number them in decreasing order.
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{in Sj(B) + In Sfc.(4)}J (respectively {in Sj(A) + In s^ .(B)}™), where

k
x
 kn is an arbitrary permutation of I, .... n. Tf C = AB, then the

vector {in SJ(C)}1
} is in the intersection of F

1
 and F

2
.

PBCKW-. As Amir-Moez has proved ([9], Theorem 3.10), for any set of

indices ji < j
2
 < ... < jk (̂  ")

Π *i
(
(C)< U*t(A)Usj(B). (2.11)

Consequently

j](\n
Sj
(C)-\ns

j
(B))*<'Z\nsj(A) (* = 1, 2, ...,«). (2.12)

3 = 1 3 = 1

Since det C = det Λ det Β and det A = [] s
;
(A), there is equality in

3 = 1 .,

the last of the relations (2.12). Thus, {in SJ(C) - In Sj(B)}^< {In S j C4) ' i ·
By Theorem 1.1 this means that

{In sj (C) - In s, (£)}?€ Δ ({In S] (A)}?),

and therefore {in SJ(Q}I e Fit Since C* = B*A* and in the passage to the
conjugate matrix the singular values do not change, {in SJ(C)}^ e F2, and
the theorem is proved.

COROLLARY 2. 3. Tf either

si(A) , sh (B) (k — \ 9 „ \\

or

Sl(B) „ sh(A)

then all the numbers Sj(C) (] = 1, . . · , n) are distinct.
4. We shall now briefly discuss the problem in what cases the theorems

given in 1. - 3. are exact.
First we take Theorem 2.2. Let α = {α,·}?, β = {0y}i be vectors of i?n

with a,· »a/+i, 8/ > 6y+i (j = 1 n - 1 ) . Denote by Κ (α, β) the
convex hull of the set of all vectors of the form {α,· + β*.}?, where
fei ^ is an arbitrary permutation of 1, . . . . n, and put
Κ (α, 0) = Κ (α, β) Π Κ (S, α). Denote by £(α, β) the set of all vectors
γ e Rn of the form γ = λ (Α + Β), where

Λ = Λ*, Β = Β*, λ(Α) = α, λ(£) = β. (2.13)

Theorem 2.2 signifies that always Ε (α,β) c Κ (Of,β). I t i s easy to
see that in the case η = 2 always Ε (α,β) = Κ (ο£, β) (this is also true in
the trivial case η = 1). In fact, if for definiteness <Xx-a2 » βι - β 2 ,
then Κ (α, β) is the interval with the end-points {<*! + β2, α2 + β*} and
{<*! + Blf <x2 + P2}· We observe that the set Ε (α, β) may be treated as the
set of all vectors γ e ft" of the form γ = λ (A + U*BU), where A and Β are
fixed matrices satisfying (2.13) and U ranges over the group of unitary
matrices. Since this group is connected, so is Ε (α,β). Since
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E(0L,B) cz K(a,B) and the ends of the interval K(a,B) are in E(OL,B),

therefore E(a,B) = Κ(α,β) .

However, the equality Ε(Ά,β) = Κ(α,β) is not true in general for any

η > 2. Further, for any η > 2 there exist vectors α, β e P
n
 such that

Ε(α,β) Φ Κ(α,Β), where K(a,B) denotes the intersection of Κ(α,β) with the

set L of all points γ = {γ/}? e i?
n
 for which YJ. » γ

2
 ̂  ... » γ

η
 (Ε(α,β) is

by definition contained in L). We give an example taken from [9]. Let

η » 3 and α = {4, 2, 2, 0 θ}, β = U, 1, 1, 0 0>. It is

obvious that γ = {β, 4, 4, 0 θ} e if (α, β), but γ£ £(<x, 6). In fact,

if γ e E(a,B), then by (0.5) we should have

which i s false.
An important case in which E(a, B) = K(a, β) was pointed out in [l]

(Theorem 3).
THEOREM 2.8 (Lidskii [l]) . If a1 - On ζ Bk - β*+ι for k = 1, v . , n - l ,

or β! - βη £ cXfe - α^+1 fork = 1, . . . , η - 1 , then £(0ί, β) = #(α, β)(= Κ(α,Β)).
The problem of describing £(α,β) completely in the general case appears

to be very difficult. All the necessary conditions so far known (see [9],
[12], [13]) for a vector γ to belong to E(a,β), apart from the obvious
condition n n „

Σγ>=Σθ7+Σβ,-, (2-14)
j = l 3 = 1 3 = 1

reduce to inequalities of the form

Σ γ, < Σ < % + Σ P i , <2·15>
P=l Ρ p=l p p=l p

where 1 ̂  Zx < . . . < l^ ζ η, 1 ̂  ij < . . . < i* ^ n, 1 ^ i i < . . . < J H "·
For η ̂  8 Horn [12] obtained a more complete description of the set Ε(α,β),
by proving that i t is characterized by (2.14) and a finite number of
inequalities of the form (2.15). He conjectured that this also holds for
any n. However, so far i t has not even been proved that E(a, B) i s convex.

Concerning Theorem 2.4 we mention only that, as is easily seen, i t s
conditions are exact for η = ι, and that this i s false, in general, for
any η > ι, as i s shown by the example α = {3, 2, 0, . . . , θ),
β = {4, 1, 0, . . . . 0>, and γ = {l, 0 0>. One might conjecture by
analogy with Theorem 2.8 that if the inequalities (2.9) or (2.10) are
satisfied (with possible equalities), then the conditions of Theorem 2.4
are exact.

Lidskii [l] established that the conditions of Theorem 2.5 are exact

i f %i{A) < lh{B) (k-A 9 „ i\
ϊ—Γ7Τ^·~ϊ T R T (Κ — 1 . Δ , . . . , Π — 1 )

MB) Xh(A)

One naturally expects analogous assertions to be valid for Theorems
2.6 and 2.7.
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3. Two theorems on symmetric gauge functions

An essential part will be played in the sequel by the concept of a

symmetric gauge function, which was introduced by von Neumann and

Schatten (see [19], p. 89 or [20], p. 68).

Denote by Κ the vector space of all finite sequences α = {α
;
·}™ of real

numbers (i.e., sequences in which only a finite number of coordinates are

different from zero). A function Φ(α), defined on Κ is called a symmetric

gauge function if it has the following properties:

a) Φ(α)>0 (αζΚ, α Φ 0);

b) for any real number λ

Φ(λα) = | λ | Φ ( α ) (αζΚ);

c) φ ( α + β ϊ < Φ ( α ) + Φ ( β ) (α, β ζ ) ;
d) if α = {α,·}? e Κ and α' = {ε^α,^}", where {fey}? is an arbitrary

permutation of the set of natural numbers and Ej = ± 1, then

Φ(α') = Φ(α);
β)Φ({1,0,0, ...}) = 1.
I t i s not difficult to see that for any symmetric gauge function Φ (α)

(3.1)
i i

If a = {ay}" is an arbitrary sequence of real numbers, then we put

α
< η )
 = {α

1
, α

2
, ..., α

η
, 0,0, ...}, a

<n
, = {a

n + 1
, a

n+2
, ...} (w = l,2, ...)·

With each symmetric gauge function Φ(α) two (in general) distinct

Banach spaces of sequences are associated (see [19], p.91-92).

The first, which we shall denote by /
φ
, consists of all sequences of

real numbers α = {α,·}™ for which

( ( η ) ) ο ο ;

the norm in ί
φ
 is defined by the equation

α φ = Μ ΐ η Φ ( α < η ) ) ( = Φ ( α ) )

The second, denoted by /<£>, i s the subspace of Ζφ, obtained by forming
the closure with respect to the norm | · | Φ of the set if of all finite
sequences. A vector α ζ Ζ φ belongs to /$' i f and only if

( η ) ) ) = 0 . (3.2)

We give a few examples of symmetric gauge functions and the associated
spaces ΙΦ and /$'.

The simplest example is the function Φ ρ (α), where

( l < p < c o ) , Φ . (α) = max Ι α, Ι (αζΚ).

If ρ < oo, the spaces 2Φα and /$' coincide and are the same as lp.
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For ρ = co, / Φ ο ο =πι, while ΖΦ^ = Ο0. For simplicity we shall denote the

n o r m | α | Φ ι = 2 Ι α > 1 b y Ι α Ι ι ·

We take the following example from [2l]. Let re = {π,}™ be a non-
increasing sequence of non-negative numbers tending to zero. Associate
with i t the following two symmetric gauge functions

oo κ η

Φπ (α) = 2 π,-α? andO>n (α) = sup ( 2 α*/ 2 π ; ) (« 6 Κ),
3 = 1 η 3 = 1 3 = 1

where α* = {α*}" denotes the sequence obtained by arranging the numbers

Ιαι11 I«21. · · · in decreasing order.
I t turns out that always Ζ^ = / Φ π , while l&n = IQ>U if and only if

Later we shall also need the definition of certain relations between
sequences of numbers analogous to those for the finite-dimensional case
considered in § 1.

For sequences ot = {oty}™ and Β = {By}? of real numbers we shall write
α « β , if

/! h
S U P 2 a j m < s u p 2 Pi™ (k = l , 2 , . . . ) ,

m=l m=t

the upper bound being extended over all systems of distinct natural
numbers jlt . . . . jfe.

If the sequences α and 8 are in llt α-<-<β, — α-(-< — β and

.2 <>;=.! β;,
then we shall write α -< β.

Later we shall need a result of Ky Fan ([5], Theorem 4). We give a
formulation convenient for our purposes, and a simple proof using Theorem
1.2.

THEOREM 3.1. Let Φ be an arbitrary symmetric gauge function and

Oi = ittj}™, 8 = {By}" sequences of real numbers. If Ρ £ ' Φ , |β,·'| ^ . |Ρ, · + 1 |

(j = 1, 2, . . . ) , and {|ay|}™ « {|R/|}?, then a G Zj and Φ(α)<Φ(β).

PROOF. I t is obvious that for any natural number η

{ Ι α , |, | α 2 | , . . . , | α η | , 0 , 0 , . . . } - « { | f c | , [ β 2 | , . . . , | β η | , 0 , 0 , . . . } ,

and consequently, by Theorem 1.2,

3 = 1

where λ
;
· >, ο, Σλ

;
· ί. 1, and the QyR

( n )
 are vectors obtained from R

( n )
 by

rearranging its coordinates and multiplying them by + l. using properties
b) - d) we obtain

Φ ( α ( η ) ) < Σ λ / D (<?,-β (>11) = Φ ( β ( " ' ) ·
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Therefore
Φ (α) = lim Φ (α(η)) < lim Φ (β(η)) = Φ (β).

η—>οο TI->CO

The theorem is proved.
In order to establish an analogous result for the space l(&\ we shall

need the following
LEMMA 3.1. Tf a, Be c0 are non- increasing sequences of non-negative

numbers, then the condition a -<-< β is satisfied if and only if there exist
numbers m.j^(j, k = 1, 2, . . . ) such that

CO

α 7 = Σ mjhfa (/ = 1, 2, . . . ) (3.3)
fc=l

and
CO CO

mJk>0 (/, * = 1 , 2, . . . ) , Σ mjk<l, Σ «*;< 1 (/= 1, 2, . . .). (3.4)

PROOF. To prove the sufficiency of these conditions we consider the
numbers

where η i s any natural number. Obviously

Σ <*,·< Σ **β*+(η- Σ ^)β»< Σ (β*-βη)+/ιβη= Σ β*.
3 = 1 / i = l ; ί = = ι / ! = ι ; ( = 1

i . e . , α - « β .
Conversely, l e t α-(-<β· If α ι = 0, then i t i s sufficient to set

mjk = 0 (j, k = 1, 2, . . . ) . If (X-L > 0, then there exists an index η such
that Άη >, at >, %+1. Obviously <XX = t% + (1 - i) fVi+i, where 0 <: t <i 1.

If a 2 = 0, we put mjk = 0 (j = 2, 3, . . . ; k = 1, 2, . . . ) . If a 2 > 0,
then we consider the sequences {di1^} and {R^1^} defined as follows:

I t i s easy to verify that {α'/'} -^ {β(/'} , and that the numbers

Sj 1^ (j - 1, 2, . . . ) - a r e averages1 of the numbers R,· (j = i, 2, . . . ) .

Applying the above reasoning to the sequences '•Cij1 ^ and iRy1 /. we

observe that the number o ^ 1 ^ a 2 i s an average of some pair of numbers

^fe1^· f̂e+i> a n c ^ therefore an average of the numbers {Bj·}. Repeating t h i s

reasoning η times and remembering that averages of averages are again

averages, we obtain that if On > 0, then ofo = Sm
n
fe6fe, where Σ % ^ = 1.

k k

If *n = 0, then we put ni/fe = 0 (j = η, η + 1, . . . ; fe = 1. 2, . . . ) .

Prom the method of construction of the sequences {Rjfe)} i t i s not

di f f icul t to deduce that
1 A number α is said to be an average of the numbers {bj} if α = Σ tjbj, where

tj > 0 and Σ tj = 1. J
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oo

^- A / 7, Α Ο \

3=1

The lemma is proved.

T H E O R E M 3.2. Let Φ be an arbitrary symmetric gauge function and

α = ία,-}™, R = {Rj}™ sequences ο/ real numbers. Γ/ β ζ Z<£> and

PROOF. I t follows from (3.1) that ll$C.c0, and therefore Β e c 0 . We

f i r s t show that also α e c 0 . In fact, i f t h i s were not so, then there

would exis t a subsequence {ctn.} of α such that | α η · | > δ > 0 (j = 1, 2, . . . ) .

Consequently, for some subsequence {P n · ) of Ρ we should have

η

η " 1 Σ Ι β*, I > δ ( η = 1 , 2, . . . ) ,

which i s impossible, because lim By = 0.
Since α, β e c 0 , by property c) we may suppose without loss of gener-

a l i ty that these sequences consist of non-negative numbers and are
decreasing. Therefore, by Lemma 3.1 there exist numbers myfe (j,k = 1,2, . . . )
such that (3.3) and (3.4) are satisf ied.

To prove the theorem i t i s sufficient to establish that (3.2) i s
sa t i s f ied . Let ε be an arbitrary positive number. Since β ζ Ιφ\ we can find
a natural number r such that

Φ ( β , π ) < β . (3.5)

Choose a natural number η such that

CO

H ^ m , A < e r ~ 1 (fc = l , 2, . . . , / · ) . (3.6)
3"=n + l '

Obviously

Λ (3.7)

where
oo

y = {Vj}T> Y , = Σ mn+j,kh (/ = 1 , 2 , . . . ) . (3.8)
k—r+l

Prom (3.8) i t follows by Lemma 3.1 that Υ-<-<β(Γ), and therefore by
Theorem 3.1

Φ(γ)<Φ(Ρ(θ)· (3.9)

On the other hand i t follows from (3.1) and (3.6) that

r oo r

Φ ( ί Σ »η#β*}£™+ι)< Σ Σ ^ * β * < ε β ι . (3.10)
h = l 7=n+l ft=l

Together (3.7), (3.9), (3 .5) , and (3.10) imply that

Φ (<*(«)) < ββ4 + ε.
Thus.
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lim<D(a ( n )) = 0.
n-+co

The theorem is proved.

§ 4 . Theorems on the convex hulls of the
rearrangements of a vector ( i n f i n i t e -

dimensional case)

Let Φ be an arbitrary symmetric gauge function and 8 some vector of
the space Ζφ. Denote by Γφ(β) (respectively Δφ(β)) the convex closed
hull with respect to the norm | · |Φ of the set of all vectors of the form
{efe6jfe}? , where ε^ = ± 1 and j \ , j 2 , . . . i s an arbitrary permutation of
the set of natural numbers (respectively of the set of all vectors
obtained by permuting the coordinates of 8).

I t i s obvious that Δ φ (β)(ζΓφ(β) and that if β£Ζφ", then ΓΦ (β) CZ $ \

THEOREM 4.1. Let Φ (ξ) be an arbitrary symmetric gauge function

such that the norm | ξ |Φ is not equivalent to the norm I £|i = 2 1^1· If

β£Ζφ, then for a real vector a={a,}j°

a-(-^and-a-<-< — β (4.1)

if and only if αζΔφ(β).
PROOF. It is not difficult to verify that by (3.1) the functionals

k

Λ(ο)= sup 2 ty, (o€Z$'; A=l. 2, ...)
ii<...<dAi=i

are convex and continuous in 1$. Consequently, for every vector α £ Δ
φ
( β )

the conditions (4.1) are satisfied.
Conversely, suppose that (4.1) holds for a vector a. It obviously

follows that

and therefore, by Theorem 3.2, α££<£'. Consequently by (3.2) for any ε > ο
we can choose an index η such that

I Ct(n) |φ < -g ·

Denote by r >y 0 (respectively Ζ » 0) the number of positive (negative)
coordinates among the 0/ (j = 1, . . . . n), and select an index m such that

| β(τη) |φ < y »

max V o i < max V β, (/> = 1, 2, . . ., r), (4.2)

min Τ) α,
(
> min V p, (p=l, 2 Z). (4.3)
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Let Q= 2 β/~~ 2 aj· Since the norms I · | Φ and | · \± are not equiva-
3 = 1 j = l

lent, there exists a finite vector σ = {σ
1(
 σ

2
, .... Ofe, 0, 0, ...} such

that the coordinates Oj (i = 1, .... fe) have the same sign as ρ and

| Oi| < min |α,· | , | σ, | < min | β, | (i = 1, 2, . . ., k),

h

^ Oj = ρ, σ | φ < -g- .
i=l

Consider the vectors

p(m)={p1; β2) . . . , p m i 0, 0, ...}anda = {at, σ2. · · · . a «. σ ι . σ2. · · ·. σ*, 0. 0, ..·}

I t is not difficult to verify that α < β*™). Since the vectors a and 6 ( m )

are finite, by Theorem 1.1

a = 2 λ^β<"·),

where \j. ̂ .0, 2Xy = 1, and the Pj (j = 1, .... s) are linear transforma-

tions effecting certain permutations of the coordinates of a vector.

Obviously

-β(™) | φ = | β ( ΐ η ) | φ < ± ,

and consequently

α -

S

Φ < Ι α - α |Φ + | Σ λ ^ β -
1

ΔΑ
 ki' .. . . _ . . . _

3 = 1 3 = 1 3 = 1

= Ια — α

| Φ

Φ~\- 2J ^jPj (p •
3 = 1

The theorem is proved.
THEOREM 4.2. If β e Z1# t/ien for a real vector α = {α,}™ the con-

dition α -< β is satisfied if and only if αζΔ Φ ι (β), where αξΔ Φ ι (β)

PROOF. I t follows from (3.1) that 4φα(β)ς;Δφ(β) for any symmetric
gauge function φ , and therefore by Theorem 4.1 the conditions (4.1) hold
for every vector α£Δ Φ ι (β) . Observing that the functional

i

is linear and continuous, we obtain that for every vector ορζΔ
Φι
(β)

; i
and consequently α -< β.

Conversely, let α «< β. Obviously <X e Z
1 #
 For an arbitrary ε > 0

choose an index η such that
 ε

α
ί")1ΐ < 4"·
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Denote by r >0 (I » 0) the number of positive (negative) coordinates
among the Hj (j = l, . . . . n), and select an' index m such that (4.2) and
(4.3) and the inequality

are s a t i s f i e d .

Obviously

le

Let

0

CO

< Σ Q J \ +
j=n+l

β(«ι)

m

= Σ3 = 1

OD

Σ
j=m+ 1

β,- Σ α/·
3=1

β/|<|«(η, |ι +

Consider the vectors

α(«) = { α ι , α 2 , . . . , α Λ , 0, 0, . . .} and β = {β!, β2, . . . , p m , ρ, 0, 0, . . . } .

I t i s not d i f f i c u l t to verify that α ( η ) < β, and therefore by Theorem 1.1

where λ
;
· £. ο, Σλ

;
· = 1, and the Pj (j = 1 s) are linear transforma-

tions effecting certain permutations of the coordinates of a vector.

Obviously

| β-' |

and consequently

Ι α - Σ λ,Λ-β |4 < Ι α - α(»> |, + | Σ Wi (β ~ β) |ι < «•
3 = 1 3 = 1

The theorem is now proved.
REMARK U.i. I t follows from Theorems 4.1 and 4.2 that if φ and ψ

are symmetric gauge functions for which | ξ | Φ and | ξ |ψ are not equi-
valent to | £ | i , and if β6Ζφ", β£Ζψ\ then Δφ(β) = ΔΨ(β). If in addition
R e lt and β / ο, then ΔΦ(β) Φ ΔΦ ι (β).

THEOREM 4.3. Let Φ (ξ) be an arbitrary symmetric gauge function.
Tf β€#ρ\ then for a real vector a = {ay}™ we have

if and only if α£Γ
φ
(β).

PROOF. Since the functionals

qh{a)= sup = 1, 2, . ..

are convex and continuous in Ζφ\ (4.4) is satisfied for every vector
α€Γ Φ (β)

Conversely, let (4.4) be satisfied for a vector a. By Theorem 3.2
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αζΖφ, and therefore for any number ε > 0 there is an index π such that

ι ι ^
 ε

Choose an index m (^ n) such that

| β(ηι)|φ < γ

and

max V |aj | < max V | βί | (p = 1, 2, . . ., n).
η<---<>ρίίη(±ί ii<...<ip=Sm/=i

S i n c e

flat |, lo js l , . . . , | o » | , 0 , 0 , . . . } « {| β , |, | β 2 | , . . . , | β , » | , 0 , 0 , . . . } ,

b y T h e o r e m 1 .2

2
;=ι

where λ;· » 0, Σ Xy = 1, and the Qj are linear transformations of the fol-
lowing form: Qj = {efeYnfe}? , where ε^ = ±1 and nlt n2, . . . i s a permuta-
tion of the set of natural numbers. Obviously

| α-α<»> | Φ = Ι α ( η ) |Φ < \ , | β - β(™> | φ = | frm) | φ < - |,

and consequently

Ι ο - Σ λ^·β |φ<|α-α(") | Φ + | 2 λ ^ (β-β<™>) |Φ < ε

The theorem is proved.
REMABK 4.2. I t follows from Theorem 4.3 that if Φ and ψ are any

two symmetric gauge functions and β £2$', βζΖψ, then Γφ(β) = ΐν(β) .

§ 5. The eigen- and singular values of the sum and
product of completely continuous operators

I. Let § be a separable Hilbert space, 9i the normed ring of all
linear bounded operators on ig, and S» the ideal of all completely con-
tinuous operators of 9i.

If Λ6 3οο, then s(A) = {SJ(A)}^ denotes the sequence of singular
values of A, i .e . , the sequence of eigenvalues of the operator (A *A)^,
numbered in decreasing order with multiplicities taken into account.

We shall need later the following two well-known properties of the
singular values:

1°. If ^16®» and Β£3ϊ, then

,(A), S J ( B A ) < \ B \ S J ( A ) (/ = l , 2 , . . . ) f (5.1)

where \B\ is the norm of the operator Β (i.e. \B | = sup | Βφ |/| φ | ) .

2°. Γ/ 4̂€@oo, 91 is t/ie invariant sub-space of A, and A is the



110 A.S. Markus

operator induced in 91 by A, then

SJ(A)<SJ(A) ( / = 1 , 2 dim91). (5.2)

Let $ be the set of all finite-dimensional operators of 9Ϊ. Following
[20] (p.54) we shall call a real function \\A\\ (ΑξΧ) defined on & a
unitarily invariant norm if the following conditions are satisfied:

a) \\A |l> 0 if A i 0, A£®;
b) |λΑ|| = |λ | ||Α|| for any number λ and any A^St;

c) \\Α + Β\\4\\Α\\ + \\Β\\(Α,ΒξΧ);
• d ) 1 \\UAV\\ = p H for any Α ζ® and any unitary operators U, V on g;

e) if if i s a one-dimensional operator, Κ = ( · , Φ) ψ, then

The following result i s due to von Neumann and Schatten (see [20],
p.69):

If Φ(α) is an arbitrary symmetric gauge function, then the equation

\\Α\\ = Φ(8(Α)) μ 6 Λ) (5.3)

defines a unitarily invariant norm on $. Conversely, for any unitarily
invariant norm \\A\\ (Α ζ, ft) there exists a symmetric gauge function φ (a)
such that (5.3) holds.

We shall denote by||.4|]® (.4 6$). the invariant norm generated by the
symmetric gauge function Φ(α) in accordance with (5.3).

Let Φ be a symmetric gauge function, and ©Φ the set of all operators
Αζ<Βχ for which ε(Α)ζΙΦ. If the norm | | . 4 | | Φ = | * ( - 4 ) Ι Φ = Φ ( * ( - 4 ) )

 i s

introduced into ©Φ, then i t becomes a Banach space. We denote by @$
the subspace of © φ obtained by taking the closure of Si.

I t i s obvious that always <3&"C<Sec:<3oo, while ©«, i t se l f i s
© Φ . = <3<DL· I t i s not difficult to see that an operator A(£<Bao) i s in
βφ0 i f and only if the vector s(A)£l$\

An important role is played in the theory of non-self-adjoint opera-
tors by the spaces ©Φ and (3$ for the case when φ = φ ρ , φ = φ π and
φ = φ π (see § 2). The spaces <5φρ = <3φρ (1 ^ Ρ < <»), usually denoted
by <3P, were f irst considered by von Neumann and Schatten, and the spaces
@Φ^, @Φ Π , and ©φ^ = @Φπ by I.Ts. Gokhberg and M.G. Krein [21].

The space @4 i s the set of all kernel operators [22]. We shall denote
the norm |j J4 ||ΦΙ in @i by ||^4||ι·

As is known, ΑζΌϋ i s a kernel operator if and only if for any ortho-
normal basis {(ρ,}? of § the following series converges:

CO

Σ (AVJ, φ,·), (5.4)

If Αζ&ι, then the sum of this series does not depend on the choice
of basis {ψ;}? ; i t i s called the trace of A and denoted by Sp A. We
mention that
1 condition d) in this definition can be replaced by the following condition (see

[20], p. 71):
d) \\ΑΚΒ\\*ζ\Α\\Β\\\Κ\\ (Κζ®; Α, Β
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(4i@i). (5.5)

2. If A i s a self-conjugate operator of ©«, we shall denote by
λ(Α) = {Xj(i4)}^S the complete system of eigenvalues of A, numbered
(taking multiplicities into account) by indices running from -oo to oo with
omission of the index j = 0 and with x

λ}(Α)>0, λ_;(Λ)<0, %j(A)>Xj+i(A), λ . 7 · μ ) < λ . Η ( 4 ) (/=1, 2, . .-) 1).

In this paragraph we shall denote by /$' spaces that differ from those
introduced in § 3 only in that they consist of sequences α = {ay}.™, where
the prime signifies omission of the index j = 0.

THEOREM 5.1. If A and Β are self-adjoint completely continuous
operators and C = A + B, then

λ (C) - λ (Β) «λ (A) and λ (Β) - X (C)« - λ (A). (5.6)

PROOF. Since - C = - A - B, i t i s sufficient to prove the f irst half
of (5.6), in other words, that for any finite system of indices
- ii < - i 2 < . . . < - ik < 0 < ji < ... < j 2 < ji

k I h+l

2 (λ-i (Ο-λ_, (Β))+ Σ (lU(C)-XJt(B))< 2 h(A). (5.7)

Without loss of generality we may suppose that to the numbers λ.ι(Β)
(i - 1 ik) there corresponds an orthonormal system of eigenvectors
Φΐ ( i = 1 ik) of B, and to the numbers λ;· (C) (j = 1, . . . . ji) an
orthonormal system of eigenvectors η/y (j = 1 ji) of C. For, if
among the values X.f (B) (i = l i&) and Xy (C) (j = 1 j i )
there are ρ that are equal to zero and to which no eigenvectors correspond,
then instead of φ we consider a space ^ = ·δ©5ϋΙ> where dim$)J£ = />,
and instead of A, B, C operators λ, Β, C that coincide with A, B, C on ig
and vanish on 9Ji- I t i s obvious that λ(Α) = λ(Α), λ(Β) = λ(Β),

X(C) = K(C), and that B and C have the required properties.

Let 9Ί be a subspace of SQ of dimension η = ι̂  + j \ containing the

vectors φ.ί ( i = 1, . . . . ik) and wy (j = 1, . . . . j i ) · ^ the orthogonal
Λ A J Λ

projector onto 9i in ig , and A, B, C the operators induced on 31 by PA,
Λ

PB, PC, respectively. As is known, the eigenvalues of A and .4 are con-

nected by the inequalities

K
J
.
n
.
l
(A)

<
Xj(A)<Kj(A) (/=1, 2, .... n), (5.8)

A A

and similarly for Β, Β and C, C. Since the vectors φ_ϊ (i = 1 ik)
and ψ,· (.7 = 1, . . . . J I ) are in 9i, the X.j (B) ( i = l ik) are
1 The term "complete" does not have altogether the usual meaning here, because if

A has infinitely many positive and infinitely many negative eigenvalues, then
the sequence {λ; (.4)}^ WH1 consist of these alone, and therefore contain no
eigenvalues equal to zero, even if A possesses some; but if A has only a finite
number η (> 0) of positive (negative) eigenvalues, then we put

0 (/ = 1, 2, ...) (λ_
η
_^(4) = 0 (/=1, 2,

independently of whether or not 0 is an eigenvalue of A.
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eigenvalues of Β and the Xj(C) 0 = 1. . . . . ji) of C. Using (5.8) for Β, Β

and C, C, we obtain

= l , 2 i
h
)

Kj(C)=lj(C) (7 = 1, 2, ..., /,).

Prom these equations and (5.8) for Β, Β and C, C it follows that

( i - 1 , 2, . . . . ift), (5.9)

/ = 1 , 2 /,). (5.10)
A A A

Applying Theorem 2.1 to A, B, and C, we can write, in particular,

h I h+l

Prom this inequality and (5.8) - (5.10) the inequality (5.7) now
follows, and the theorem is proved.

Later we shall need the following
LEMMA 5.1. If Η£<&<*, and Τ ζ ©4 are self-adjoint operators, then

OO

2 ' (kj(H + T)-lj(H)) = SPT, (5.11)
; = - o o

the series on the left being absolutely convergent1.
PBCOF. Since by Theorem 5.1

and λ(Η)-λ

the series on the left of (5.11) converges absolutely, with

2 |λ,·(#+Γ)-λ;(#)|< S |λ,(Γ)ΐΗ|Γ|ΐ,. (5.12)
}=—oo j = —oo

Let ε be an arbitrary positive number and let

η

κ = Σ ( · . <PJ)<PJ ( ( φ ; . <ΡΑ) = ο . ] ' Φ Α)

be a self-adjoint finite-dimensional operator such that

\\T-K\UKl. (5.13)

Further, let {ψ&}™ be an orthonormal basis of £ composed of eigen-
vectors of H, and let

Til

Λ » = Σ ( · , Ψ * ) Ψ * ( m = l . 2 , . . . ) .
ft=l

Choose m so large that

I PmVi - 9,· | < ε (16Β« | ΛΓ {^y1 (/ = 1, 2, . . . , n),

and put
1 As M. G. Krein has pointed out to the author, Lemma 5.1 can be derived from his

trace formula.
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For any χ ζ ί β

\(x, Pm(pj)Pm<¥

Consequently

and j = 1 η

4 - | ( x , / ' « φ , · - φ,-) φ,· [ < I Pmffj — <fj\(\ Pm<Pj \ +

+ \<pj\)\x\<2\K\lh\Pm<pj-<pJ\\x\

Since dim (Κ - Κ) ζ 2η,

From (5.13) and (5.14),

T~K\V<\.

(5.14)

(5.15)

Denote by 91 the subspace spanned by the vectors vfy (;' = 1, . . . . m), and
by 9i, i t s orthogonal complement in ig. Obviously 9i and S'lj are invariant
for ff and K, and ^5Jli = 0. Since 91 is finite-dimensional, i t follows
that the complete systems of eigenvalues of Η and Η + Κ differ by only a
finite number of elements. Therefore we can find natural numbers k and I,
integers ρ and q (p + k > 1, ς - I ̂  - 1), and a finite-dimensional sub-
space 3Κ251 such that

2)
3) the spectra of Η and fl + Κ in 501 coincide, respectively, except

possibly for zero values, with the systems

{λ, (J50}J±fri and {λ,· (Η + K)}1lU-

Obviously

j

ft-l p+ft-l

2
The right hand side of this equation coincides with the trace of the part
of the operator Κ in the subspace 2ft, but since K(^Q^Jl) = 0, i t i s

equal to Sp K, Thus,

(5.16)

Applying (5.12) to tf + Τ and # + K, we obtain

2'
j=-oo

(5.17)
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We note also that by (5.5)

||7
I
-.8!||

1
. (5.18)

Prom (5.16) - (5.18) and (5.13) it follows that

| f]'
j

Since ε is arbitrary, (5.11) now follows, and the lemma is proved.
THEOREM 5.2. Tf A£<&n and fig©» are self-adjoint operators, and

C = A + B, then

λ(Ο)-λ(Β)<λ(Α).

For by Theorem (5.1) the conditions (5.6) are satisfied, while by
Lemma 5.1

2' (Xj(C)-ij(B))= 2' λ,-μ).
j=—oo j=—oo

THEOREM 5.3. Let Φ be an arbitrary symmetric gauge function,
Αξ.<Βφ and #g(3oo self-adjoint operators, and C = A + B. Then the
vector X(C) - λ(β) is contained in Δφ(λ(4)) ) the convex closed hull,
with respect to the norm I · |o>of the set of all vectors obtained by per-
muting the coordinates of\(A).

I f the norm | α | φ , i s not equivalent to | a | i = Σ |oty | , then Theorem
5.3 follows from Theorems 5.1 and 4.1, and i f | α | φ i s equivalent to | tx | i ,
i t follows from Theorems 5.2 and 4.2.

COROLLARY 5.1. Let Φ be an arbitrary symmetric gauge function, A
and Β two self-adjoint operators of @Φ\ and Κχ (Κ2) the convex closed
hull, with respect to the norm 1$, of the set of all vectors of the form
{Xj(B)+Kk.(A)}Z1 (respectively {lj (A) + K.(B)}'~J, where {kj}'^ is
an arbitrary permutation of the sequence {/}" . Tf C = A + B, then
λ ( Q e ^ n ^ .

3. THEOREM 5.4. Tf A and Β are completely continuous operators and
C = A + B, then

{\SJ(C)-SJ(B)\}?«S(A). (5.19)

PROOF. Consider the self-adjoint operator, acting on the space § Χ φ ,
Α

* Ο

and similarly defined operators Β and C.

Applying Theorem 5.1 to A, B, and C, we obtain

λ (C) — λ (Β)« λ (Α), λ (Β) — λ (C)« - λ (Α). (5.20)

It is easy to verify that

kj(A) = sj(A), l-j(A)= -sj(A) (7 = 1. 2, . . . ) ,

and similarly for Β, Β and C, C. Therefore (5.19) follows from (5.20).
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COROLLARY 5. 2. Tf A, 2?€<3°° and C = A + B, then for any finite
system of indices jj. < j2 < ... < jk

t = l f (=1 i = l

For the case jt = t (t = 1, . . . . k) this was established by Ky Fan
([δ], Theorem 5).

Prom Theorems 1.2 and 5.4 follows
COROLLARY 5.3. Tf Φ. is an arbitrary symmetric gauge function,

Α, Β €©», and Α—Βζ&φ, then

\\Α-Β\\Φ>Φ(3(Α)-ε(Β)).

For the finite-dimensional case this result was obtained by Mirsky

[ i d .

THEOREM 5.5. Let Φ be an arbitrary symmetric gauge function,

Αξ&&\ B6@.,omiC= A + b. Then
s (C) - s(B) ζ ΓΦ(8 (A)).

This follows from Theorems 5.4 and 4.3.
4. THEOREM 5.6. Tf Α, Βζ®^ and C = AB, then for any finite

system of indices ji < j2 < . . . < jk

(Π *it (Q < £ *t (A) JJ sh (B). (5.21)

PBOOF. Represent C in polar form: C = IE, where U is a partially iso-
metric and Η a non-negative operator. Obviously Η = U*AB and
\/ (Η) = sj (C) (j = 1, 2, . . . ) .

Let 9Ί be the subspace of lg spanned by the eigenvectors of Η corres-

ponding to the eigenvalues \j(H) (j = l, . . . . jk), and Ρ the orthogonal

projector of φ onto 91. Choose a unitary operator V such that FZ?-Jlc:9},

and put 4X = PU*AV*, Bi = VB. Denote by Η,^ A±, Bx the operators induced on

91 by H, Alt Blt respectively. Obviously Η = λί ΒΐΦ Applying to Η, Alt and

Bi the finite-dimensional analogue of a theorem proved earlier (see

inequality (2.9)), we obtain

it k h

tD *it W < (Π( *t Ui) ( υ *i( 0 i) · (5-22)

By (5.1) and (5.2)

*j (i i) < sj (A), sj (Bt) < sj (B) (/ = 1, 2, . . ., / f t). (5.23)

From (5.22), (5.23), and the obvious equations

sj (H) = λ,· (Η) = λ,· (Η) = SJ (C) (j = 1, 2, . . . , Μ)

(5.21) follows, and the theorem is proved.
We mention that for the case jt = t (t = 1, . . . . k) Theorem 5.6 was

established by Horn [β].
If A and Β (€©«,) are non-negative operators, then C = AB is
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non-negative only in case AB = BA. However, the eigenvalues of
C =$•$>• Φ· Φ· a i s o coincide in the general case with those of
(Α% Φ- # ) # = A^ Φ (A^2 Φ·)* ; consequently they are non-negative, since
the eigenvalues of Α» Z$ (A™ Eft)* are the squares of the singular values
of A^· B&, by applying Theorem 5.6 to the product of A^ and Φ we obtain
the following proposition (in the sequence {λ̂  (C)}? the eigenvalues of C
are numbered in order of decreasing modulus and with multiplicities taken
into account).

THEOREM 5 .7 . 1 If A and Β are non-negative operators of @B

C = AB, then for any finite system of indices j ± < j 2 < . . . < jk

<=ι Γ ί=ι ί=ι τ

5. If Η i s a self-adjoint operator of @oo, we put

lj(I + H) = l + Kj(H) (; = ± 1 , ± 2 , . . . ) .

We introduce the notion of singular values for operators of the form

U + T, where U is unitary and Τ completely continuous, as follows:

8j
 (U + T) = (λ,- ((U* + T*) (U + T)))

1
'* = (1 + λ,- (U*T + T*U +.T*T))V2

(/ = ±1, ±2,...).

It is easy to verify that these singular values have the following
properties:

1°. If U and t/t are unitary operators and TgSoo, then

±U±2, . . . ) . (5.24)

2°. If 5i is an η-dimensional invariant subspace of Β = U + T, and Β

is the operator induced by Β in 31, then

sj^ (B) < sj (B) <
Sj
(B) (/ = 1, 2, ..., B). (5.25)

THEOREM 5.8. Suppose that Φ is an arbitrary symmetric gauge
function, 2 Ί ζ © φ \ Tz£&<x>, that the operators A = I + Tx and Β = Γ + T2

vanish only at the origin, and that C = AB. Then

{In Sj (C) - In 8) (B)}'Z, 6 ΔΦ ({In s} (A)}'Z,).

PBOOF. Since

In 8l (I + T) = 1 λ,· (Τ + Τ* + Τ*Τ) + ο (λ,- (Τ + Τ* + Τ*Τ)),

for 71 ζ ® ^ we have
{In sj (I+T)}'~mtC\

Therefore, by Theorems 4.1 and 4.2, i t is sufficient to establish that

ι The finite-dimensional case of Theorem 5.7, together with this method of
deriving i t from a theorem on the singular values of the product of two opera-
tors, i s indicated by Amir-Μοίζ ( fe]. Theorem 3.12).
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{In sj (C) - In Sj (B)}'Z>« {In Sj (A)}Z, (5.26)

{In sj (B) - In Sj (C)}'Z> «{-In S] (4)}X (5.27)

and if 2Ί6©ι. that

{In Sj (C) - In Sj (B)}'Z> < {In Sj (Α)}'Ζ>. (5.28)

Since Β = A^C and SJ(A'1) = Sj1 (A) (j = ±1, ±2, . . . ) , (5.27) follows from
(5.26). To prove (5.26) i t i s sufficient to establish that for any finite
system of indices

— h < — h < • · • < — h < 0<fi < Ji-i < . . . < Λ

we have
k *_i (C) l sj (C) h+l

Π -F7W Π -ψΒΥ < Π Ί Μ)· ( 5 · 2 9>

Represent C and Β in polar form: C = UH, Β = ί/^, where ί/, ^ are
unitary and H, Hi positive. I t i s easy to verify that Η - Τ and /?! - Τ are
completely continuous. Obviously

λ,· (Η) = Sj (C), Xj (F,) = SJ (B) (/ = ± 1, ± 2, . . . ) . (5.30)

Without loss of generality we may suppose that to the values
\j(H) (j = l, . . . . ji) there corresponds an orthonormal system of eigen-
vectors ψ ;·(; = ι, . . . . ji) of H, and to the values λ-i (H^ (i = 1, . . . . ife)
an orthonormal system of eigenvectors φ. ί( ΐ = 1 , . . . , ife) of ffj. (this i s
established in exactly the same way as the analogous assertion in the proof
of Theorem 5.1). Let 3Ji be the linear hull of the vectors \y,(j = l, ...,ji),

2Jh that of the vectors φ.{ ( ι = 1 ik), and 9Ί a subspace of φ of
dimension η = ik + Jl containing 9tt and 2Κι· Denote by U2 and U3 unitary
operators satisfying the conditions

and by Η, A, Hx the operators induced in 91 by U3H, UsU'AU^, U^, res-

pectively. Since UgH = U^lfAUJJlV^, therefore Η = AHlm Applying (2.11)

to Η, A, and fflf we obtain

- « f w n νξ)_ π U ( 5 3 1

By (5.24) and (5.25)

U (5-32)

(5.33)

^ ( F , ) < *; (l/aiST,) = s, (F,) (/ = 1, 2, . . . , /,). (5.34)

Prom (5.25), by the choice of the subspace 91 and the operators i/2, U3,
i t i s not difficult to deduce that
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Xj(H)(f = 1 , 2 ,

Inequality (5.29) follows from (5.30 - (5.35).

Thus, to conclude the proof it remains to show that if

(5.28) holds, i.e.

i
k
). (5.35)

l
, then

3=—oo 3=—oo

The proof of this relation is basically analogous to that of Lemma
5.1, and therefore we omit i t .

Just as Theorem 5.7 is derived from Theorem 5.6, so we can easily
obtain from Theorem 5.8 the following proposition, the infinite-dimensional
analogue of Theorem 2.5.

THEOREM 5.9. Let Φ be an arbitrary symmetric gauge function, and
let the operators A = Τ + H± and Β = Γ + if2 be positive definite, where
^ ι € ®Φ' and Hzf&oo. If C = AB, then1

{In λ; (C) — In λ) (B)}'Z> 6 ΔΦ ({In λ,- (Α)}^).

I t i s obvious that corollaries similar to Corollary 5.1 also hold for
Theorems 5.5, 5.8, and 5.9.

6. With the aid of the methods indicated above, the inequalities for
the eigen- and singular values of matrices established in [9], [12], [l3]
can also be carried over to the infinite-dimensional case. We give as an
example the analogue of one of the theorems of Amir-Moez ([9], Theorem
3.6).

THEOREM 5.10. If Α, Β ζ @« and C = A + B, then for any system of
indices

h < h < • • • < i

we have

< /
2
 < · · · < Μ

k

(A) + 2 (5.36)

where lp = ip + j p - 1 (p = 1 ife), and m(ip) is defined by (0.4).
PROOF. We represent C in polar form: C = UH, and denote by 9Ί the sub-

space of i§ spanned by the eigenvectors of Η corresponding to the eigen-
values λ,· (Η) = SJ(C) (j = 1 m(h))· If Ρ i s the orthogonal pro-

jector of $3 onto 91, we put A± = PU A and Bj. = PU B. We denote by H, Alt

Bi respectively. Since Η = A^, by [9] (Theorem 3.6) the inequality (5.36)
Α Λ Λ

i s valid for H, Alt and Blt and since

(5.36) i s also valid for C, A, and B. The theorem is proved.
We mention in conclusion that by analyzing the proofs of Theorems 5.6

It is easy to see that the eigenvalues of C are positive and tend to 1. We
number those greater than unity in decreasing order by the indices 1 to 00, and
those less than unity in increasing order by the indices -1 to -00.
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and 5.10 one can easily establish the validity of the following general
assertion.

THEOREM 5.11. Tf for arbitrary matrices A and Β of order η we have

S s , (A + ΒχΣ [Si (A) + s} (B))
p = l Ρ P = l * μ

ft ft N̂

(respectively {] s, (AB)< \\ ^ (A)SJ (B)j, where the indices
p=i P p—t p PS

ip, ip> lp (i i) are fixed, then this inequality also remains valid for
arbitrary operators A, B6<S<»·

A similar assertion also holds, for example, for an inequality of the
form (0.3) (compare [12], Theorem 4), but the formulation of complete
analogues of such inequalities for self-adjoint completely continuous
operators is complicated somewhat by the method of enumerating their
eigenvalues.

Received 11th April 1963.
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