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Introduction

V.B. Lidskii [1] proved the following theorem, which in intuitive geo-
metrical terms establishes a connection between the eigenvalues of the sum
of two Hermitian matrices and the eigenvalues of the summands.

Let A and B be Hermitian matrices of order n, and K, (respectively K,)
the convex hull of the set of vectors of the form1 (B + Ak A%
(respectively {K Ay + Ak (By}7 ), where ky, ko, ..., kn is an arbltrary
permutation of the numbers 1, 2, ..., n. Then the vector {KJ(A + B)}7 is
in the intersection of K; and K,.

Also in (1] an analogous theorem was established for the eigenvalues
of the product of two positive definite matrices.? This theorem was later
carried over to the case of unitary matrices by A.A. Nudel’ man and
P.A. Shvartsman [(3]. (For the formulation of these two theorems see § 2,3.)

In his paper [4] Ky Fan established (Theorem 1) a property of the
eigenvalues of an Hermitian matrix from which it follows immediately that

1 {Mj(A4)}} denotes the complete system of eigenvalues of A, numbered in
decreasing order.

2 As Lidskii mentions, the latter result had been obtained earlier by
I.M. Gel’ fand and M.A. Naimark in the course of their investigations into the
theory of group representations. Proofs of both these theorems based on group-
theoretical methods are given in the paper [2] by F.A. Berezin and I.M.Gel’ fand.
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lej(AJrB)g 'zix,-(A)jL lej(B) (k=1,2, ..., n). (0.1)
= = i=

Shortly afterwards [5] he proved this same inequality for the
singular values® of arbitrary matrices A and B, while Horn (6] established
an analogous inequality for the singular values of the product of two
matrices (to be precise, they established these results for arbitrary com-
pletely continuous operators in Hilbert space).

Apparently no connections between Lidskii’s geometrical propositions
and inequalities of the type (0.1) were discovered at the time.

In 1955 Wielandt [7], with the help of minimax properties of the sums
of eigenvalues of Hermitian matrices which he had proved, established in
generalization of (0,1) that for any system of indices 1 ¢ j, < j, < ...
<Jkgn

3 h k
p; My (A+B) < X b, (4)+ 2 b (B). (0.2)

He discovered that by a result of Birkhoff (8] (see Remark 1.1 below)
the inequalities (0.2) (together with those obtained from (0.2) by inter-
changing A and B) are equivalent to the above theorem of Lidskii.

One year later Amir-Moéz, developing Wielandt’ s method, obtained a
number of new inequalities for the eigenvalues of the sum of two Hermitian
matrices and the product of two positive definite matrices, and for the
singular values of sums and products of matrices. In particular, he proved
that for any systems of indices 1 ¢ i, ¢ .., ¢ ipgnandl g j, g ...
< Jk < n satisfying the conditions

k<n and ip+jp<n—k+p+1 (p=1,2, ..., k),

the following inequality holds:

k 3 k
2 My (A+B)< X Ay (A)+ 2 by (B), (0.3)
p=1 =1 p=1 :

where

Lo=iptip—1 (p=1,2, ..., k)
and
m (i) =iy, m(ip)=max (ip, m(ip-)+1) P=2,3,...,k). (0.4)
It is easy to verify that for 1 ¢ iy < i, < ... < iy ¢ n and

Jjp=1(=1, 2, ..., k) the inequality (0.3) becomes (0.2). For E=1on
the other hand (0.3) becomes the well-known inequality of H. Weyl (10]

Misj (A+B)<M(A)+1;(B)  (E+j<n+1), (0.5)

1 The singular values of a matrix A are the non-negative square roots of the
eigenvalues of the matrix A*A4: s; (A)=(A; (A*A)"2 (j==1, 2, ..., n).
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which was established as long ago as 1912 and seems to be the earliest
known relation connecting the eigenvalues of A, B, and A + B.

Unfortunately the general inequality (0.3) hardly admits of an
intuitive geometrical interpretation.

In [11] some additions to the above-mentioned results were obtained,
and generalizations of some of them to the infinite-dimensional case.

Recently certain new connections between the eigenvalues of A, B, and
A + B have been established in {12] and [13]. In Horn’s paper [12] a
method is indicated for obtaining new relations between the numbers
Aj (A), Aj(fb, Nj(A+B) (j =1, ..., n) from known ones. By repeated
application of this method one can, in particular, arrive at the inequality
(0.2), starting from (0.1).

In the present paper the main results on connections between the
eigen- and singular values of the sum (product) of linear operators and
those of the summands (factors) are set forth, with complete proofs as far
as possible. Attention is paid principally to results that admit of a geo-
metrical formulation similar to that of Lidskii’s theorem given above.

In § 2 a proof of Lidskii’s theorem is given which uses ideas from
Wielandt’ s paper [7], but not his minimax property. In the same section
some propositions about the singular values of matrices, analogous to
Lidskii’ s theorems, are proved.

As in Wielandt’ s paper, the main results are first established in the
form of certain inequalities between the eigenvalues (or singular values).
These are then put into geometrical form with the help of theorems on the
convex hulls of certain sets of vectors, which are proved for the finite-
dimensional case in § 1 and for the infinite-dimensional case in § 4.

The results of 8§ 4 are based on the concept of a symmetric gauge
function due to J. von Neumann and R. Schatten, and on certain propositions
about such functions established in § 3.

In § 5 the results of § 2 are generalized to the case of completely
continuous operators in Hilbert space.

The author is grateful to I.Ts. Gokhberg for valuable discussions of
the questions considered here.

§1. Theorems on the convex hulls of the rearrangements
of a vector (finite-dimensional case)

Let R® be an n-dimensional Euclidean space and B = {Bj}? an arbitrary
vector in R". Denote by A (B) the convex hull of the set of vectors
obtained from B by all possible rearrangements of its coordinates, and by
I' (B) the convex hull of the set of all vectors of the form

feas (1.1)

where €, =+ 1 (k=1, 2, ..., n) and j,, Jo, ..., N is an arbitrary per-
mutation of the numbers 1, 2, ..., n.
In the present section two auxiliary propositions about A (B) and I' (R)

1 We mention that among the inequalities obtained in [13] there are some that are
new as compared with (0.3). We give one of them (for n = 5):

Ay (A+4-B)+hs (A4 B)+hy (A+ B) < M (A) -+ g (A) 4Ky (4) 21 (B)+Ay (B)+4y (B).



94 A.S. Markus

will be established. Their proofs are based on the following simple pro-
position, which constitutes a finite-dimensional analogue of the well-
known theorem of M.G. Krein and D P. Mil’man [14] on the extreme points of
a convex compact set.

1°. Every convex bounded closed set in R* is the convex hull of the
set of its extreme points.!

For any vector o = {aj T (e R*), denote by a* = {a}}’l' the vector
obtained from @ by rearranging its coordinates in non-increasing order.

Let o, B € R*. We shall write a 4 f, if

k R
2 a5< 2Py (k=1, 2,...,n). (1.2)
=t =1
If a4 P and in addition there is equality in the last of the rela-
tions (1.2), i.e.

n n
2 a;= 28,
=t =1

then we shall write a < .

THEOREM 1.1. If B € R*, then a < Pif and only if ¢ € A(B).

PROOF. 1t is easy to verify that the set D(B) of all vectors o for
which a < ﬁ,is convex, bounded, and closed. Therefore, by Proposition 1°,
it is sufficient to establish that a vector Y is an extreme point of D(B)
if and only if it can be obtained from B by rearranging its coordinates.

Without loss of generality we suppose that B* = 3, Since either both
or neither of the vectors y and Y* are extreme points of D(B), and since
by 1° the set of extreme points of D(B) is not empty, it is sufficient to
prove that a vector y € D(B) such that Y* = vy and Y # B is not an extreme
point of D(R). We now prove this assertion.

Denote by k the least index for which Y # B, and by m the least
index such that m > k and

Obviously
t t
D<A (t=k,...,m—1).
=1 =1
Also, if k> 1, then Yr < Br < Bkey = Yk-1, and if m < n, then

Ya > Bn > Bas+s = Ymaio
Choose € > 0 such that the following candidates are satisfied:

1 A point of a convex set ¥ is called an extreme point of M if it is not the mid-
point of any interval with end-points in M.

2 This notation is borrowed from [15] and [16].
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t t
e <J§1 B — jgiy,. (t=k, ... ,m—1), (1.3)
£ < Ye-1 — Ya it k> 1, (1.4)
& < Ym— Ym+1» if m<n, (15)
e< 5 (—Vm) 1T Ya> Ym, (1.6)

and consider the two vectors

0={Y1 ceoy Yh-1, Yh+8, Yh+1s « + +» Ym—h Ym—€, Ym+is +« > Yn}1
(S:{Yh ooy Yh—1s ‘Yk“—es Ya+ir + - <9 Ym—1s YM+87 Ym41s «» « 'Yn}-

From (1.4) and (1.5) it follows that o* = ©. Using this and (1.3) it
is easy to verify that ¢ € D(B). If Y, = Y,, then 8 is obtained from o by
transposing its k-th and m-th coordinates, and therefore belongs to D(P)
together with 6, If Y > Yn, then using (1.6) it is not difficult to
verify that & € D(B). Since Y = (0 + 8)/2, 0 # 5, and 0, b € D(B), it
follows that Yy is not an extreme point of D(B), and the theorem is proved.

REMARK 1.1. Theorem 1.1 seems to have been first established by Rado
(17]; his proof was based on a theorem about the separation of convex sets
by hyperplanes. However, as Horn [18] observed, it can also be obtained by
combining earlier results of Hardy, Littlewood, and Pélya ([15], p.49) and
Birkhoff [8]. These results are as follows. In [15] it is proved that the
condition @ < B 1is equivalent to o = M3, where M = ”mjk”"f is a doubly
stochastic matrix, i.e., mjp >0 (j, k=1, 2, ..., n) and

n n
kgimjhzkgimk,.:i (=1, 2,...,n).

Birkhoff [8] established that a matrix M is doubly stochastic if and only

$ s
if M= 2 t;P;, where tj>0,2tj=1, and the PJ- (=1, ..., s) are
gz i

=5
permutation matrices, i.e., matrices in which in each row and in each
column one element is equal to one and all the others to zero. Since the
action of a permutation matrix on a vector is to permute its coordinates,
Theorem 1,1 follows immediately from these two results.
THEOREM 1.2. If B € R®, then for a vector a € R the condition

{la; 1} <{IBs 1)1 (1.7)

is satisfied if and only if o € I'(B).

PROOF. 1t is easy to verify that the set G(f) of all vectors a € R"
for which (1.7) is satisfied is convex, bounded, and closed. Therefore by
Proposition 1° it is sufficient to prove that a vector Y is an extreme
point of G(B) if and only if it is of the form (1.1).

Without loss of generality we may suppose that BJ- 20 (5= 1, 2, ..., n
and B* = B. Since either both or neither of Y and any vector of the form

{EkYik};L’

where €, = * 1 and Y;, ..., Yn is a permutation of 1, ..., n, are extreme
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points of G(B), and since by 1° the set of extreme points of G(B) is not
empty, it is sufficient to establish that a vector y € G(B) satisfying the
conditions Y; >0 (j =1, 2, ..., n), Y* =y, and Y # B is not an extreme
point of G(B). We pass to the proof of this assertionm.

Denote by k the least index for which Y, # Bp. Obviously, if k& > 1,
then Yp < Br < Bp-1 = Yr-1 . Consider the two possible cases:

Choose € > 0 such that

t t
e<(_21 B, — Zly,-)/2 (t=k,...,n), (1.8)
= =
e < Yp-1—7Yr, ecam k>1, (1.9)
and put
“':{Yh ooy Yr-1s 'Yh'f‘ax Yhtte « <o Yn_a}
T:{Yh vevy Ye-1y Yo — &, Yhtts oo Yn+8}-

Using (1.8) and (1.9) it is not difficult to verify that u, T € G(B).
Since Y = (L + T)/2 and L # T, Y is not an extreme point of G(B),
2) For some index m > k

igﬁ YJ':J; B (1.10)

Let m be the least number >k for which (1.10) holds.

since 1Yy, Y2, eve, Yut < {Bi1, B2, ..., Bp} and these vectors are dis-
tinct, then, as was shown in the proof of Theorem 1.1, we can construct
vectors 0 = {0;}7 and 6 = {8;}F such that {yy, Y2, ..., Ya} = (0 + 8)/2,

o #6, and
G<{6" ﬁ2’ "'11‘57“}9 6<{Bl7 ﬁz- ~--1ﬂm}- (11'1)

If m = n, then since 0, & € G(B), we conclude that Y is not an extreme
point O0f G(B). If m < n, then Yp > B > Bp+si > Ym+r. Consequently if we
choose the number € in the proof of Theorem 1.1 sufficiently small, we can
ensure that the vectors o and & also satisfy

Om > Ym+1s 0 > Ym+1- (1.12)

Consider the vectors

g:{ah ce oy Omy Ymtts « 0 o 'Yn} and 82{61, Ceey 6m, Ym+1s ==« ’Yn}

From (1.11) and (1.12) it follows that &, & € G(B). Since Y= (G + 8)/2
and 0 f/g, Y is not an extreme point of G(f), and the theorem is proved.
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§2. The eigen- and singular values of the sum
and product of matrices

In what follows we shall not distinguish between a square matrix of
order n and the operator in n-dimensional unitary coordinate space £"
determined by it. If A is an Hermitian matrix of order n, we shall denote
by A(4) = {?\j (A)}T the complete system of eigenvalues of A, numbered in
decreasing order and with multiplicities taken into account.

THEOREM 2.1 (Wielandt [7]). If A and B are Hermitian matrices of
order n and C = A + B, then \(C) - A\(B) < A(4).

PROOF. For n = 1 this is obvious; now suppose it true for n - 1.

Denote by ®; (respectively w;) the eigenvectors of the operator B(C)
in §" corresponding to the eigenvalues \;(B) (\;(G)) (j =1, 2, ..., n).
Denote by @ any (n - 1)-dimensional subspace of $H" containing the vectors
;i (J=m+1, ..., )y andy; (j =1, ..., m - 1), where m satisfies

A (€) =M (B) = min (A;(C) —1;(B)). 2.1)

sjsn

Let P be the orthogonal projector onto Jt-in £”,and 4, B, C the
operators induced in ¢ by PA, PB, PC respectively.

As is known, the eigenvalues of A and 2 are connected by the
inequalities

Ay (A) <A (A)<?»,- A4) (G=1, 2,...,n—1), (2.2)
and similarly for B, B and C, 6’

Since M contains the vectors P; (J=m+1, ..., n) and
Wi (j =1, ..., m—1), the numbers A\j(B) (j =m + 1, ..., n) are eigen-

values of ﬁ, and the numbers A\;(C) (j =1, ..., m-1) eigenvalues of C.
Using (2.2) for B, B and C, C, we obtain

MBY=huB) (=m ..., n—1), LE)=1C) (=1, m—1).
From these inequalities and the relations (2.2) for B, § d C, C it
follows that
bO—MB>M O =4 B) (=1,..., m—1), (2-3)
A; (C)—?» (B)> hjes €)—Ajss (B)  (=m, ..., n—1). (2.4)

By the inductive hypothesis

MC)—A(B) < A (A),
and consequently

3 R R N A
2 €)= BY* < R4y (A) (k=1,2,...,n—1). (2.5)

Since by (2.1)
(A (€) — An (B))* = hm (C) — Am (B),

it follows from (2.2) — (2.5) that
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k k
20 0) =k (BN*< 23 M (4) (=1, 2, n—),

and since
SpC—SpB==Sp A4,
we have
j§1 (A5 (C)—2; (B))=j§7»j(A)-
The theorem is now proved.

THEOREM 2.2 (Lidskii [1]). Let A and B be Hermitian matrices of
order n, K, the convex hull of the set of all vectors of the form

(05 (B)+ ()} (2.6)
and K, the convex hull of the set of all vectors of the form

{hs (B) 4+, (A,

where ky, ..., kp is an arbitrary permutation of 1, ..., n. [f C= A + B,
then the vector AN(C) is in the intersection of K, and K,.

PROOF .since, by Theorem 2.1, A(C) — A(B) < A(4), therefore by Theorem
1.1 the vector \(C) — A(B) is in the convex hull A(A(4)) of the set of all
vectors obtained by permuting the coordinates of A(A). Consequently
MGy € K,, and since the matrices A and B may be interchanged, A(C) € K,.

COROLLARY 2.1 (Lidskii [1]). If either

M (A)—An(4) <k (B)—Mss (B) (k=1, 2,..., n—1) (2.7)

A (B)—An (B) < Ax(A)—Musy (4) (E=1, 2, ..., n—1),

then C has no repeated eigenvalues.

In fact, if for example (2.7) holds, then all points of the form (2.6),
and therefore also their convex hull K,, lie in the half-space of R"
defined by the inequalities x; — x4, >0 (k =1, 2, ..., n=1).

2 Let A be a complex matrix of order n. We shall denote by
s(A) = {sj(4)}} the complete system, arranged in decreasing order, of
singular numbers of A, i.e., square roots of the eigenvalues of A*A, where
A* is the Hermitian-conjugate matrix of A,

THEOREM 2.3 (L. Mirsky [16]). If A and B are matrices of order n
and C = A + B, then

{Is;(C)—s;(B) [} K s(4) (2.8)

PROOF. Denote by A the following Hermitian matrix of order 2n:

~ (0 A4
AZA*O'

It is easy to verify that the eigenvalues of A are the numbers

+ Sj(A) (J =1, 2, eoey 0.1
1 This remark is due to Wielandt.
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. Applying Theorem 2.1 to Z and to the similarly defined matrices § and
C, we obtain

{s1(C)—5,(B), ..., 5o(C)—5,(B), sn(B)—sn(C), ..., 5i(B)—s,(C)} <
<{s51(4), ..., sp(4), —sp(4), ..., —s1(4)}.

From this (2.8) follows immediately.

THEOREM 2.4. Let A and B be matrices of order n, and L, (Ly) the
convex hull of the set of all vectors of the form {s (B + €j Sk; (AH}7
(respectively {s](A) + €)Sk; (By}?), where SJ =%1 and ki, «.. kn is an
arbitrary permutation of 1, ..., n. If C = A + B, then the vector s(C) 1is
in the intersection of L, and L,.

PROOF. From Theorems 2.3 and 1,2 it follows that s(C) - s(B) € ['(s(4)).
Therefore s(C) € L,, and since A and B can be interchanged, s(C) € L,.

COROLLARY 2.2. If either

s (A) £ 83 (4) < sn(B)—snie(B)  (k=1, 2, ..., n—1) (2.9)

or

$1(B)+5:(B) < sp(A)—snss (4)  (k=1,2, ..., n—1), (2.10)

then all the numbers Sj(C) (j =1, ..., n) are distinct.

3. We now formulate the theorems on the eigenvalues of the products
of positive definite and unitary matrices established in [1] and [3], and
we prove an analogous theorem on the singular values of the products of
matrices.

THEOREM 2.5 (Lidskii [1])." Let A and B be positive definite
matrices of order n, and My (M,) the convex hull of the set of all vectors
of the form {1n ?\] (B) + 1In )\k (A} (respectively {1n 2 Aj(A) +1n )\k (B)}7
where ky, ..., kn is an arbltrary permutation of 1, ..., n. If C = AB
then the vector? {ln?\] (O is in the intersection of My and M,.

I1f.U is a unitary matrix of order n, then we denote by wg(U)

(k=1, ..., n) the numbers defined by the conditions

1) {exp (iwp (I))}? is the complete system of eigenvalues of U;

2) 2T > wy () > ... 2wp(h) 20

THEOREM 2.6 (Nudel’man and Shvartsman [3]). Let U and V be unitary
matrices of order n for which

0, (U)+ 0y (V) — o (U) —an (V) < 271

If Ny (N;) is the convex hull of the set of all vectors of the form
{ldj(U) + Lokj(V)}? (respectively {h)j(V) + wk]-(U)}’l‘), where Ry, ..., kn is
an arbitrary permutation of 1, ..., n, and if W= UV, then the vector
{mj(W)}';‘ is in the intersection of Ny and N,.

THEOREM 2.7. Let A and B be non-degenerate matrices of order n, and
F, (Fy) the convex hull of the set of all vectors of the form

1 A result equivalent to Theorem 2.5 was obtained later by Amir-Moez ([9], Theorem
3.12) in the form of certain inequalities between the numbers Aj(A4), A;(B) and
Aj (C) but apparently he did not notice the equivalence of the theorems.

2 Although C is positive definite only when AB = B4, the eigenvalues of C are
always positive. We number them in decreasing order.
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{In sj(B) + In skj(A)}? (respectively {1n sj(4) + 1n skj(B)}'{‘), vhere
ky, «v., by is an arbitrary permutation of 1, ..., n. If C = AB, then the
vector {In sJ-(C)}'{‘ is in the intersection of F, and F,.

PROOF . As Amir-Mo€z has proved ({9], Theorem 3.10), for any set of
indices j3 < jo < ... < Jr (¢ D)

kR I3 k
ﬂl 53,(C) <le s:(A) t[=]1 s, (B). (2.11)
Consequently
'g(lnsj(C)_lns,-(B))*<glns,-(A) (k=1,2, ..., n). (2.12)

n
Since det C = det A det B and det 4 = ﬂ sj(A), there is equality in
=1
the last of the relations (2.12). Thus, {In $;(0) - In sj(B)}?< {In s]-(A)}?'
By Theorem 1.1 this means that

{lns; (C)—Tns; (B))r € A({Ins; (4)})),

and therefore {In sj (O)}} € F,. Since C* = B*A* and in the passage to the
conjugate matrix the singular values do not change, {In s (O)}? € F,, and
the theorem is proved.

COROLLARY 2.3. If either

s1(A) sg (B) B _
sn (A) < spe1 (B) (k=1,2,...,n—1)

or

s1(B) _ sg(4) o
o (B) <o A (k=1, 2, ..., n—1),
then all the numbers si(Q) (j =1, ..., n) are distinct.

4. We shall now briefly discuss the problem in what cases the theorems
given in 1. - 3. are exact.

First we take Theorem 2.2. Let o = {otj}’f. B = {Bj}? be vectors of R"
with 0; > @j4, Bj 2 B854 (j =1, ..., n-1). Denote by K (a, B) the
convex hull of the set of all vectors of the form {oLj + Bk]-}"{, where
ki, ..., ky is an arbitrary permutation of 1, ..., n, and put

X (@, By =K (0, B {1 K (B, o). Denote by E(a, B) the set of all vectors
Y € R* of the form Y = A (A + B), where

A=A*, B=B* A(A)=a, A(B)=p. (2.13)

Theorem 2.2 signifies that always E (¢,B) < K («,B). It is easy to
see that in the case n = 2 always E (¢,B) = K (%, 8) (this is also true in
the trivial case n = 1). In fact, if for definiteness 0, —d, > B, —B,,
then K (0,B) is the interval with the end-points {a; + B,, 0o + Py} and
{a, + By, 0o + B,}. We observe that the set E (o,B) may be treated as the
set of all vectors Yy € R" of the form y = \¢(A + U*BU), where A and B are
fixed matrices satisfying (2.13) and U ranges over the group of unitary
matrices. Since this group is connected, so is E (a,B). Since
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E@,By < X(d,ﬂ) and the ends of the interval R(a,B) are in E(o,B),
therefore E(,8) = R(a,ﬁ).

However, the equality E(a,B) = R(a,B) is not true in general for any
n > 2. Further, for any n > 2 there exist vectors @, B8 € R™ such that

E(, By # R(a,B), where k(a,ﬂ) denotes the intersection of K(o,B) with the
set L of all points Y = {y;}T € R” for which Y1 > Yo >... » Yn (E(0,B) is
by definition contained in L). We give an example taken from [9]. Let
nz3anda={4 2, 20, ..., 0, B=1{4 1, 1, 0, ..., 0}. It is
obvious that v = {6, 4, 4, 0, ..., 0} € K(a,B), but Y ¢ E(a,B). In fact,
if v € E(a,B), then by (0.5) we should have

Y3 << @z - Bg,

which is false. .

An important case in which E(«,B) = K(a,() was pointed out in [1]
(Theorem 3).

THEOREM 2.8 (Lidskii [1]). If 0 — oy < Br ~ Brysq for k=1,...,n-1,
or B, - Bpn g A - tpyq fork =1, ..., n—1, then E(a,B) = K(o,B) (= K,B)).

The problem of describing E(a,B) completely in the general case appears
to be very difficult. All the necessary conditions so far known (see [9],
[12], [13]) for a vector vy to belong to E(a,B), apart from the obvious
condition n

2 V=2 ¢ +j§ B, (2.14)

j=t i=1

reduce to inequalities of the form
n 3 3
2V < Do+ N B, (2.15)
p=1 P p=1 P p=1 P

where 1 ¢ I3 < ... < lpgm 1giy <vie €lpgN 1< J1<ee < Jp <
For n < 8 Horn [12] obtained a more complete description of the set E(a,P),
by proving that it is characterized by (2.14) and a finite number of
inequalities of the form (2.15). He conjectured that this also holds for
any n. However, so far it has not even been proved that E(c, B) is convex.

Concerning Theorem 2.4 we mention only that, as is easily seen, its
conditions are exact for n = 1, and that this is false, in general, for
any n > 1, as is shown by the example o = {3, 2, 0, ..., o},
B={4, 1,0 ..., 0}, and Yy = {1, 0, ..., 0}. One might conjecture by
analogy with Theorem 2.8 that if the inequalities (2.9) or (2.10) are
satisfied (with possible equalities), then the conditions of Theorem 2.4
are exact.

Lidskii [1] established that the conditions of Theorem 2.5 are exact

it M(4) M (B)

An(A) ™ Apet(B)

(k=1.2, ..., n—1)

or M (B) Ar (A4)

A'I’L(-B)\ Ark+1(A) (kzi’ Z’ LR ] n—“1).

One naturally expects analogous assertions to be valid for Theorems
2.6 and 2.7.
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3. Two theorems on symmetric gauge functions

An essential part will be played in the sequel by the concept of a
symmetric gauge function, which was introduced by von Neumann and

Schatten (see [19], p.89 or [20], p.68).

Denote by K the vector space of all finite sequences d = {aj}°1° of real
numbers (i.e., sequences in which only a finite number of coordinates are
different from zero). A function @ (a), defined on K is called a symmetric
gauge function if it has the following properties:

a) O(a)>0 (a€ K, a=+0);

b) for any real number A

DO (Ma)=[A|D®(a) (a€K);

) ®(a+p<D(a)+D(P) (a, PeK); ©
d) if o = {a;}7 € K and o' = {eja;,}7, where {k;}T is an arbitrary

permutation of the set of natural numbers and €; = % 1, then
D (a') =D (a);
e) ®({1,0,0, ...})=1.
It is not difficult to see that for any symmetric gauge function @ (a)
max|o; | <D ()< D]a;|  (a={e;}€K). (3.1)
J ¥

Ifao-= {aj}f is an arbitrary sequence of real numbers, then we put

a‘”’:{ai, asy ..., Qp, 0, O, .. .}, (I(n)={an+1y Un+2y - - } (n:l, 27 . )

with each symmetric gauge function @ (a) two (in general) distinct
Banach spaces of sequences are associated (see [19], p.91-92).
The first, which we shall denote by [g5, consists of all sequences of

real numbers o = {0} for which
sup @ (a™) < oo;
n

the norm in lp 1is defined by the equation
lajo=lm® @™) (=D () (e€la).
n—roo

The second, denoted by [$’, is the subspace of I4, obtained by forming
the closure with respect to the norm |-|o of the set K of all finite
sequences, A vector a€lp belongs to I[P if and only if

lim | @, jo (= lim @ (a,n)) =O. (3.2)

We give a few examples of symmetric gauge functions and the associated
spaces lo and [P,

The simplest example is the function @, (a), where
@y () =(X]a;P)"/" (1< p < o), D (a)=max|o;]| (a€K).
2 7

If p <, the spaces lg, and lﬁ;’p coincide and are the same as Ip.
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For p = ®, lg =m, while I§ =c,. For simplicity we shall denote the

norm |a]¢1=2|aj]by ]ali.
?
We take the following example from [21]. Let m = {m;}T be a non-

increasing sequence of non-negative numbers tending to zero. Associate
with it the following two symmetric gauge functions

[e o) n n
O (o) = 2,0 and O (@) =sup( X' of/ o)  (a € K),
where a* = {aj}f denotes the sequence obtained by arranging the numbers
|a1|, |a2|, ... in decreasing order.
It turns out that always Ig) =lo,, while l‘oﬁ‘h:l(bn if and only if

©
_an < o0o.
=1

Later we shall also need the definition of certain relations between
sequences of numbers analogous to those for the finite-dimensional case
considered in § 1.

For sequences @ = {a;}7 and B = {B;}T of real numbers we shall write

ap,if

I3

k
sup 3 ag<sup D Bim  (h=1,2, ...),
m=|1 H

m=

the upper bound being extended over all systems of distinct natural
numbers ji, «ee, Jk.
If the sequences o and R are in l;, a«f, —a<—p and

then we shall write a < f.

Later we shall need a result of Ky Fan ([5], Theorem 4). We give a
formulation convenient for our purposes, and a simple proof using Theorem
1.2.

THEOREM 3.1. Let @ be an arbitrary symmetric gauge function and
o = {otj}‘f, 8= {Bj}cf sequences of real numbers. If pe¢lgy. ’Bj'i >,|Rj+1’
(J =1, 2, ...), and {|<le}°1° <« {le’}f, then a€ly and O(a)<<D(P).

PROOF. It is obvious that for any natural number n

{lagls Jazl, ..oy an], 0, 0, .o} KA{IBel, 1Bl -+ -y [Bal, 0,0, ...},

and consequently, by Theorem 1.2,

8
v — 21 )"ijB(.,L)’
=

where A; >0, Z)\; > 1, and the Qj!?(") are vectors obtained from (") by
rearranging its coordinates and multiplying them by * 1. Using properties
b) - d) we obtain

0 (am)) < 27 KjCD (Qjﬁm)) ) (B(m)'
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Theref
erefore @ (a) = lim @ (a™) < lim @ (™) = D ().

The theorem is proved.

In order to establish an analogous result for the space I, we shall
need the following

LEMMA 3.1. If &, B € ¢y are non-increasing sequences of non-negative
numbers, then the condition u<{f is satisfied if and only if there exist
numbers mj, (7J, k=1, 2 ...) such that

oC

a= X maPs (F=1,2,...) (3.3)

and

mip>0(/, k=1,2, ...), 121 mip<1, 121 mp; <1 (j=1,2,...). (3.4)
R =
PROOF. To prove the sufficiency of these conditions we consider the
numbers

Sp = ijk (lL:1, 2, ),
j=1

where n is any natural number. QObviously

n—1 n—1 n—1

2 o; < 21 Skﬁh _}_(n——lZi .S'h) 5n< 21 (ﬁk_ﬁn) '+‘nﬁ71:h§ ﬁkv

ji=1 h= = h=
i.e., a K p.
Conversely, let a<p. If a; = 0, then it is sufficient to set
mip =0 (j, k=1, 2, ...). If &y > 0, then there exists an index n such
that B, > o, > Rpyq. Obviously o4 = tBy + (1-1t) Ryy,, where 0 < t < 1.
If 0y = 0, weput mjp =0 (j =2, 3, ...; k=1, 2 ...). If &y >0,
then we consider the sequences {OL](.l)} and {Rj(i)} defined as follows:

B’ =B, (7 <n), B=PrtBrii—ay, B =010 (F>n),
a?’—:ujﬂ (7=1,2, ...).

It is easy to verify that {a’}<<{B"}, and that the numbers
B](.l) (j =1, 2, ...) are averages™ of the numbers B; (j =1, 2, ...).
Applyving the above reasoning to the sequences {OLJ(-l) and {9](-1)}. we
observe that the number OL§1)= 0o, 1s an average of some pair of numbers
R,gl), ngiz, and therefore an average of the numbers {Rj}. Repeating this
reasoning n times and remembering that averages of averages are again

averages, we obtain that if ®n > 0, then dy = ZmupBr, where Zmy = 1.
k k

If 0p = 0, then we put mjp =0 (J =n, n+1, ...; k=1, 2, ...).
From the method of construction of the sequences {Bj(k)} it is not
difficult to deduce that
1 A number a is said to be an average of the numbers {bj} if @ =7, tjbj, where
tj >0 and JEtj:l. J
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Mmip<t (E=1,2,...).
j=1

The lemma is proved.
THEOREM 3.2. Let @ be an arbitrary symmetric gauge function and

= {0;}7, B = {B;}T sequences of real numbers. Tf Bely and
{la; B KB ). then a€ld.

PROOF. 1t follows from (3.1) that I§ Cc,, and therefore B € c¢4. We
first show that also @ € cq. In fact, if this were not so, then there
would exist a subsequence {a J} of d such that !an | >6>0 (j=1,2, ...).
Consequently, for some subsequence {Bn } of R we should have

n-1j§l [Br;|>8 (n=1,2,...),

which is impossible, because lim R]- =

Since o, B € ¢p, by property ¢) we may suppose without loss of gener-
ality that these sequences consist of non-negative numbers and are
decreasing. Therefore, by Lemma 3.1 theére exist numbers mjp (j,k = 1,2, ...)
such that (3.3) and (3.4) are satisfied.

To prove the theorem it is sufficient to establish that (3.2) is
satisfied. Let € be an arbitrary positive number. Since P€ !$, we can find
a natural number r such that

DB .)<e. (3.5)

Choose a natural number n such that

) 2‘1 mi,<erl (k=1,2,...,71). (3.6)
J=n+
Obviously
(D(a(n)) <O ({ Z mjhﬁk}?z—‘11+1)+q)(Y), (37)
where
Y= = 2 mne bl (=12, 0. (3.8)

From (3.8) it follows by Lemma 3.1 that y<{f,, and therefore by
Theorem 3.1

D (v) <D (Bery)- (3.9)
On the other hand it follows from (3.1) and (3.6) that
@ ([ X mubaliZnt) < > mBr < e (3.10)
h=1 i=n41 k=1

Together (3.7), (3.9), (3.5), and (3.10) imply that

D () < 3
Thus, (an)) < &Py ¢
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1im @ (a(ny) = 0.
n—>00

The theorem is proved.

§ 4. Theorems on the convex hulls of the
rearrangements of a vector (infinite-
dimensional case)

Let @ be an arbitrary symmetric gauge function and 8 some vector of
the space lo. Denote by I'g(B) (respectively Ag(f)) the convex closed
hull with respect to the norm I o of the set of all vectors of the form
{exB;,}7, where € = £1 and ji, jz, ... 18 an arbitrary permutation of
the set of natural numbers (respectively of the set of all vectors
obtained by permuting the coordinates of B).

It is obvious that A (B)CTe(P) and that if PelP, then Ie(P)CiP.

THEOREM 4.1. Let ®(E) be an arbitrary symmetric gauge function

such that the norm |&lo 1is not equivalent to the norm |§|1=2|§j|. If

peld, then for a real vector a={a;}® J

a4 fand —a K —f (4.1)

if and only if a€Ae(B).
PROOF. It is not difficult to verify that by (3.1) the functionals

R
pr(a) = sup Zajt (eel@; k=1, 2, ...)
<kt=i

n<...<d

are convex and continuous in [§. Consequently, for every vector o€ Ag(B)

the conditions (4.1) are satisfied.
Conversely, suppose that (4.1) holds for a vector ¢. It obviously
follows that

{lo; e K IR 1)

and therefore, by Theorem 3.2, a€ly. Consequently by (3.2) for any € > 0
we can choose an index n such that

|“(n)i¢<—e3--

Denote by r > 0 (respectively ! > 0) the number of positive (negative)
coordinates among the ¢; (j = 1, ..., n), and select an index m such that

e

[Bomylo < 5»
P q
~ max D o, < max M, (p=1,2,...,7), (4.2)
1<, .. <J'p$n =1 1<, . .<‘iq$m t—1
qsPp
- p . q
min 0;,> min Bi, (p=1 2,...,10). (4.3)
7'1<...<jp$n = 1<, . .<(qu =1

q<p
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m n
Let o= 2 Bi— Z a;. Since the norms |- |p and l |1 are not equiva-

lent, there exists a finite vecter 0 = {01, Oo, s+, Ok, 0, O, ...} such
that the coordinates 6; (i = 1, ..., k) have the same sign as 0 and

[o:f < min |a;|, |o;|< min|B;| (i=1,2,...,k)
i<n jsm
a0 Bj+0

k
Soi=o lolo<-
i=l1

Consider the vectors
B =By, Bay -+ s Bm» 0, 0, ... }anda={ay, @y, ..., @n, Of, O3, +.., Opy 0, 0, ...

It is not difficult to verify that a < PU™. Since the vectors o and B(™
are finite, by Theorem 1.1

8
a: ZI Jﬁ(m)
where A\; >0, ZAj =1, and the P; (j = 1, ..., s) are linear transforma-
J

tions effecting certain permutations of the coordinates of a vector.
Obviously

la—alo< la<n)lm+l0|¢><“—, |B—B™ o =Bumlo < 3,

and consequently

L]

la— u’»P;ﬁlcb |a~a1¢+lePJ(3 ZMP,-W")I(D:

=la—ajp+] Z APy (B—B™) o <] a—a o+ | Bem o < e.

The theorem is proved.
THEOREM 4.2. If B € l,, then for a real vector o = {otj}? the con-

dition a <P is satisfied if and only if a€Aq,(B), where agAqg, (P)

PROOF . 1t follows from (3.1) that Ag, (B)C Ae(p) for any symmetric
gauge function (D, and therefore by Theorem 4.1 the conditions (4.1) hold
for every vector o€ Ag,(p). Observing that the functional

f(§)=;§j (Bely)

is linear and continuous, we obtain that for every vector g€ Aqg, (f)

5
% a;= ;1 Bi
and consequently a < f§.

Conversely, let a <f5 Obviously a € ll. For an arbitrary € > 0

choose an index n such that
o < 7 -

|8
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Denote by r >0 (l » 0) the number of positive (negative) coordinates
among the o (j =1, ..., n), and select an index m such that (4.2) and
(4.3) and the inequality

€
| B(m) ’1 < *4—
are satisfied. Let

)
I
HM3

Obviously
lQ]<’ E ai‘+] Z ﬁj[\<la(n)li+‘fﬁ(m)]1<-§—.
j=n+i ji=m4+1 =
Consider the vectors
a(n):{ai’ gy vy Up, O’ O’ .. '} and E:{ﬁli 627 e .oy f’m, 2, 07 Ov .. }

It is not difficult to verify that oW < ﬁ and therefore by Theorem 1,1
3
alm) — 21 A,jpjﬁ,
==

where Aj >0, 2\; =1, and the P; (j =1, ..., s) are linear transforma-
J

tions effecting certain permutations of the coordinates of a vector.
Obviously

le—a® | =lam <5, [B—PBl<|el Bk <o
and consequently
Ia—ZlPﬁli !a—a<n>|+|>3w<ﬁ Blh<e.

The theorem is now proved.
REMARK 4.1. 1t follows from Theorems 4.1 and 4,2 that if @ and ¥
are symmetric gauge functions for which |§ls and |&|w are not equi-

valent to |&|,, and if BELY, PP, then Ag(B)=Aw(B). If in addition

Be ll and B 7! 0, then AQ(B) +* A(Dl (ﬁ)
THEOREM 4.3. Let ®(E) be an arbitrary symmetric gauge function.
If Bely, then for a real vector 0 = {ocj}‘f we have

{la; e K{B N (4.4)
if and only if a€lg(B).
PROOF. Since the functionals
qr(@)= su Zfaltl (aeld; k=1, 2,...)

n<. Jh =1

are convex and continuous in Ig', (4.4) is satisfied for every vector

a€ls (B)
Conversely, let (4.4) be satisfied for a vector o. By Theorem 3.2
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a €1, and therefore for any number € > 0 there is an index n such that

€
Ia(n)i0<5-

Choose an index m (3> n) such that

| Bemlo <
and
max 2 laj, | < max 2 I8, (p=1,2, ..., n).
sny— <ipEm =y
Since
{ladl, lag], «..y [an], 0,0, ...} {{Be]s {Ba]s ---s |Bml, 0,0, ...},

by Theorem 1.2
s
atm= >} 1,Q,8,
i=t

where \; > 0, 2 A\j =1, and the Q; are linear transformations of the fol-
lowing form Q = {ekYnkh , where €, = +1 and n,, n,, ... is a permuta-
tion of the set of natural numbers. Obviously

la—a®lo=|amlo < 5, [B—B™lo=|fm'o <3,

and consequently

le— 2 AQBlo<|e—a™lop+| 2 AQ; B—P™) o <e

The theorem is proved.
REMARK 4.2. It follows from Theorem 4,3 that if @ and ¥ are any
two symmetric gauge functions and PE€lg, BE€IY, then I'g ()= 'y (p)-

§ 5. The eigen- and singular values of the sum and
product of completely continuous operators

l. Let § be a separable Hilbert space, & the normed ring of all
linear bounded operators on §, and 3, the ideal of all completely con-
tinuous operators of .

If A€ 5w, then s(4) = {Sj(A)}‘f, denotes the sequence of singular
values of A, i.e., the sequence of eigenvalues of the operator (A*A)%
numbered in decreasing order with multiplicities taken into account.

We shall need later the following two well-known properties of the
singular values:

1°. If A€Bx and BENR, then

s;(AB) <|B|s;(4), s;(BA)<|B|s;(4) (j=1, 2, ...), (5.1)
where |B| is the norm of the operator B (i.e. lB|=Supqu) UeNE
€9
2°. If A€Bw, M is the invariant sub-space of A, and A is the
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operator induced in M by A, then
si(d)<s;(4) (=1, 2, ..., dimRM). (5.2)

Let & be the set of all finite-dimensional operators of R. Following
[20] (p.54) we shall call a real function |[4| (A€ %) defined on £ a
unitarily invariant norm if the following conditions are satisfied:

a) [A|l>0if A # 0, AER;

b) M| = [A] |A]l for any number \ and any A€ &;

c) |4 + Bl < [| 4]l + |IBll (4, Be %);

- dyt ||UAV]| = ||A]] for any A€R and any unitary operators U, V on ©;

e) if K is a one-dimensional operator, K = (., 0) v, then

IK[=[K|=|o[|¥l].

The following result is due to von Neumann and Schatten (see [20],

p.69):
If ®(a) is an arbitrary symmetric gauge function, then the equation

|All=®(s(4)) (A€®R) (5.3)
defines a unitarily invariant norm on . Conversely, for any unitarily
invariant norm [|A|| (A€ &) there exists a symmetric gauge function @ (a)
such that (5.3) holds.

We shall denote byl|| A|jo (A€ ®).the invariant norm generated by the
symmetric gauge function @(a) in accordance with (5.3).

Let @ be a symmetric gauge function, and ©¢ the set of all operators
A€Bx for which s(4)€lo. If the norm ||A|jo=]s(4)lo=D(s(4)) is
introduced into ©@, then it becomes a Banach space. We denote by SQ
the subspace of ©g obtained by taking the closure of R,

It is obvious that always S CSeC S,, while S, itself is
S0.=GP,. It is not difficult to see that an operator A(€ ©.) is in
S§ if and only if the vector s(A4)€lg.

An important role is played in the theory of non-self-adjoint opera-
tors by the spaces ©o and @&§ for the case when @=0,, D=0y and
O=, (see § 2). The spaces Gg,=63, (1 < p <®), usually denoted
by &, were first considered by von Neumann and Schatten, and the spaces
Gdy Copp, and S ) =@ _ by I.Ts. Gokhberg and M.G. Krein [21].

The space &, is the set of all kernel operators [22]. We shall denote
the norm [[Ajle, in &; by |4

As is known, A€ is a kernel operator if and only if for any ortho-
normal basis {ij}"io of $ the following series converges:

@0

2, (495, 9)): (5.4)

]._-

If A€S,, then the sum of this series does not depend on the choice
of basis {p;}7; it is called the trace of A and denoted by Sp A. We
mention that
1 condition d) in this definition can be replaced by the following condition (see

[20], p.71):
d) ||AKB|I|A||B||K]|| (Ke®; A, BER).
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[SpA|<||Alx (4€Sy). (5.5)

2. If A is a self-conjugate operator of ©w, we shall denote by
AAY = {\ ()} 3 the complete system of eigenvalues of A, numbered
(taking multiplicities into account) by indices running from - to c with
omission of the index j = 0 and with?

2 (4)>0, A ;(4)<0, A;j(4)>hj(4), r(A)<h-j-(4) (=1, 2,..)Y.

In this paragraph we shall denote by (§’ spaces that differ le'om those

introduced in § 3 only in that they consist of sequences ¢ = {(xj}_: , where
the prime signifies omission of the index j = 0.

THEOREM 5.1. If A and B are self-adjoint completely continuous
operators and C = A + B, then

M(C)—A(B) K A(A) and A(B)—A(C) K —A(A). (5.6)

PROOF. since - C = — A - B, it is sufficient to prove the first half
of (5.8), in other words, that for any finite system of indices
-3 < —1p < e €= <0< JI < .uu € Ja< ]y
R i R+l

Z sy (€)=, BY+ 3 (s, (O) =My (BN < D hs(4). (5.7)

Without loss of generality we may suppose that to the numbers A_;(B)

(i =1, ..., ip) there corresponds an orthonormal system of eigenvectors
Pi(i=1, ..., ig) of B, and to the numbers A\; (C) (j =1, ..., j1) an
orthonormal system of eigenvectors w; (j = 1, ..., j1) of C. For, if

among the values A_; (B) (i =1, ..., ip) and \; (O) (J =1, ..., JI)
there are p that are equal to zero and to which no eigenvectors correspond,
then instead of £ we consider a space $=H@P M, where dim = p,

and instead of A, B, C operators 4, B ¢ that coincide with A B, Con ©
and vanish on 9}}. It is obvious that A(4) = ?\(A), AB) = 7\(B),

NOY = A(ﬁ), and that B and C have the required properties.

Let ¢ be a subspace of § of dimension n = iy + j] containing the
vectors ©_; (i =1, ..., i) a.nd Y (] =1, ..., Jj1), P the orthogonal
projector onto i in £, and A B C the operators induced on N by PA,
PB, PC, respectively. As is known, the eigenvalues of 4 and A are con-
nected by the inequalities .

Ajng (A)<A; (A)<A;(4) (7=1, 2, n), (-8)

and similarly for B, B and C, C. Since the vectors o_; (i =1, ..., i})
and ¥ (j =1, ..., j1) are in N, the Aog B (i =1, ..., i) are
1 The term “complete’” does not have altogether the usual meaning here, because if

A has infinitely many, positive and infinitely many negative eigenvalues, then
the sequence {A;(A4)} %, will consist of these alone, and therefore contain no

eigenvalues equal to zero, even if A possesses some, but if A has only a finite
number n (> 0) of positive (negative) eigenvalues, then we put

Mgi(A)=0 (=1,2 ...) Qopnj(4h=0 (j=1, 2, ...))

independently of whether or not 0 is an eigenvalue of A.
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eigenval/\ues ofl§ and the 7\j(C) =1, ..., j1) of C. Using (5.8) for B, §
and C, C, we obtain

Ansi-i (B)=A_ (B) (i=1, 2, ..., i)
M(O)=M,(C) (=1,2,..., i)
From these equations and (5.8) for B, é and C, 6’ it follows that
Ans1-1 (C) —=Anpi—i B) > A (C) =AM (B) (i=1, 2, ..., iy), (5.9)
MO =M (B)>M(C)—M(B) (=1, 2, ..., ). (5.10)

Applying Theorem 2.1 to ,3, é, and 6‘, we can write, in particular,
h A A ! A h+l A~
2 Pty (€)= Ansamsty (B) + 3 (A4, €)=y, (BY < 24y (A),

From this inequality and (5.8) - (5.10) the inequality (5.7) now
follows, and the theorem is proved.

Later we shall need the following

LEMMA 5.1. If HEGw and T ¢ ®©, are self-adjoint operators, then

3 s+ —hy(H)=SpT, (5.11)

the series on the left being absolutely convergent?,
PROOF. Since by Theorem 5.1

A(H +T)—A(H) K A(T) and A (H)— A (H+T) & —M(T),

the series on the left of (5.11) converges absolutely, with

J

b 4T b @) < 310D =1T . (5.12)

[ee) = -— 00

Let € be an arbitrary positive number and let

n
K=f—zl('v ?) 9 (95 9)=0, j£ k)
be a self-adjoint finite-dimensional operator such that

IT—Kj <. (5.13)

Further, let {;}7 be an orthonormal basis of § composed of eigen-
vectors of H, and let

Pa=3 (o o)W (m=1,2,...)
Choose m so large that

| Pmp;—@;| <e(16m?| K|/ (=1, 2, ..., n),
and put

1 As M.G. Krein has pointed out to the author, Lemma 5.1 can be derived from his
trace formula.
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K= (-, Pn@y) Png;.

[UE

i
For any € and j =1, ..., n

(@, Pn®;) Pm®;i— (2, 9;)9;|<|(%, Pm®;) (Pm@;— ;)| +
+l(z, Pu®;—95) 95| <| Pm®; — 95| (| Pm@s |+

+leihle) <2/K 2| Pup;— ;]| % .
Consequently

|E~K|<j§21K|1/2|Pm(Pj—‘le <e(8n).

Since dim ([? - K) < 2n,
| K — —K|y<2n|K— K|<-— (5.14)
From (5.13) and (5.14),
|17 —K | < 5 - (5.15)

Denote by R the subspace spanned by the vectors Wy (Jg=1, ..., m), and
by R, its _orthogonal complement in $. Obviously S,R and N, are invariant

for H and K and KM, =0. since N is finite- dimensional, it follows

that the complete systems of eigenvalues of H and H + K differ by only a
finite number of elements. Therefore we can find natural numbers k and [,
integers pand ¢ (p + k> 1, ¢ - Ll < — 1), and a finite-dimensional sub-
space YN DN such that

1) M HEE) =0 () (G>h), Ay (H+K) =g (H) (1)
2) HMC M, KMCM;

3) the spectra of H and H + K inm coincide, respectively, except
possibly for zero values, with the systems

A ()T and (A (H+ K)ok,
Obviously
r—1 p+h—1

2 M ETR) =)= B b EAR)— 3 (H).

_q-—

The right hand 51de of this equation coincides with the trace of the part

of the operator K in the subspace Ui, but since K(.@@gm)_ , it is
equal to Sp K, Thus,
200 (A; (H 4 K)—2; (H))=SpK. (5.16)
Applying (5.12) to H + T and H + I?, we obtain
S a H 1) b E 4 B < TR, .17

j=—c0
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We note also that by (5.5)
|SpT —SpK|<||T—K| (5.18)

From (5.16) — (5.18) and (5.13) it follows that

| 3 (H+T) =0 (H)—SpT| <e.
J=—0
Since € is arbitrary, (5.11) now follows, and the lemma is proved.
THEOREM 5.2. I[f A€®, and B€S, are self-adjoint operators.and
C=A+B, then

A (C) — M (B) < A (A).

For by Theorem (5.1) the conditions (5.6) are satisfied, while by
Lemma 5.1

2 A (C)—2;(B)= 2 A;(4).
j=—c0 j=—o0
THEOREM 5.3, Let @ be an arbitrary symmetric gauge function,

AcBY and BeGn self-adjoint operators, and C = A + B. Then the
vector AN(C) - A\(B) is contalned in Ag(A(4)), the convex closed hull,
with respect to the norm | |0 of the set of all vectors obtained by per-
muting the coordinates of \(A).

If the norm |a|g, is not equivalent to la], = Zlajl, then Theorem
5.3 follows from Theorems 5.1 and 4.1, and if |ajp is equivalent to |“|1.
it follows from Theorems 5,2 and 4.2.

COROLLARY 5.1, Let ® be an arbitrary symmetric gauge function, A
and B two self-adjoint operators of @¢, and K, (K,) the convex closed
hull, with respect to the norm I, of the set of all vectors of the form
{A; (B) }—kh (4)} 5 (respectively {A; (A)—Jr-}\,h (B)} o), where {kj}:f’:o is
an arbltrary permutation of the sequence {]} If C= A + B, then

AM(C)EK, [] Ks.

3. THEOREM 5.4. If A and B are completely continuous operators and

C= A+ B, then
{s (€) —s; (B) |} < (4). (5.19)

PROOF. Consider the self-adjoint operator, acting on the space §X &,
-~ "0 A
A= (A* 0 )
and similarly defined operatgrs § and 6‘
Applying Theorem 5.1 to A, B, and C, we obtain
AMO)—A (B) LA (D), AB)—A (@)K — A (). (5.20)
It is easy to verify that
A (A)=s;(4), Ay (A)= —s;(4)  (=1,2,...),
and similarly for B, B and C, C. Therefore (5.19) follows from (5. 20).
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COROLLARY 5.2. If A, B€E@w and C = A + B, then for any finite
system of indices ji < j, < ... < Ji
k

kR k
2 55,(0)< D st (A)+ 25, (B).
t=1 t—1 t=1

For the case j; = t (t =1, ..., k) this was established by Ky Fan
([5], Theorem 5).

From Theorems 1.2 and 5.4 follows

COROLLARY 5.3. If ®.is an arbitrary symmetric gauge function,
A, BeBw,and A—BEOg, then

| A—Bllo>® (s (4)—s(B)).

For the finite-dimensional case this result was obtained by Mirsky

l16].
THEOREM 5.5. Let @ be an arbitrary symmetric gauge function,
A€BY), B€ECw,and C= A + B. Then
s(C)—s(B)eTo (s(4)).

This follows from Theorems 5.4 and 4.,3.
4. THEOREM 5.6. If A, B€ESx and C = AB, then for any finite
system of indices jy < j, < ... < jj

k - 3 k
L s €< 1 se(4) I 53, (B). (5.21)

PROOF. Represent C in polar form: C = UH, where U is a partially iso-
metric and H a non-negative operator. Obviously H = U*AB and
N =50 (G=1, 2 ...).

Let :t be the subspace of § spanned by the eigenvectors of H corres-

ponding to the eigenvalues A;(H) (j = «s+, Jr), and P the orthogonal
projector of £ onto % Choose a unltary operator V such that VBRC N,
and put A, = PU*AV*, = VB. Denote by H Al, 31 the operators 1nduced on

W vy H, A, B, respectlve]y Obviously A= A B Applying to H Al, and

B, the finite-dimensional analogue of a theorem proved earlier (see
inequality (2.9)), we obtain

11 s, (< ,f.l s (Ay) ,I:Ii iy (B1). (5.22)
By (5.1) and (5.2)
i (A)<s;(4), s;(B)<s;(B) (f=1,2, ..., Ja). (5.23)
From (5.22), (5.23), and the obvious equations
si(H)=A; () =2 (H)=s;(C) (j=1,2, ..., )

(5.21) follows, and the theorem is proved.

We mention that for the case j, = t (t = 1, ..., k) Theorem 5.6 was
established by Horn (6].

If A and B (€ Sx) are non-negative operators, then C = AB is
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non-negative only in case AB = BA, However, the eigenvalues of
C = A% A% B% B% also coincide in the general case with those of

(A% B B%) A% - A% ph (A"'é B%)“ ; consequently they are non-negative. Since
the eigenvalues of Ak B% (A% B%)‘ are the squares of the singular values
of A% B%, by applying Theorem 5.6 to the product of A% and B% we obtain
the following proposition (in the sequence {?\j (C)}°1° the eigenvalues of C
are numbered in order of decreasing modulus and with multiplicities taken
into account).

THEOREM 5.7.1 If A and B are non-negative operators of S, and
C = AB, then for any finite system of indices ji < Jo < ... < Jk

3 R E

[ %, © < 11 2 (4) L %, (B).

t=1
5. If H is a self-adjoint operator of ©., we put
MUI+H)y=14+MH) j=L1, 2,...).

We introduce the notion of singular values for operators of the form
U+ T, where U is unitary and T completely continuous, as follows:

s;(U+T)=M; (U*+T*) (U+ D)) 2= +4; (U*T +T*U +T*T))'2
G==1, £2,...).
It is easy to verify that these singular values have the following

properties:
1°. If U and U, are unitary operators and T €S«, then

s; (U U+T)=5;(U+TYU)=s;(U+T)(j==x1, L2, ...). (5.24)
2°. If M is an n-dimensional invariant subspace of B= U+ T, and B
is the operator induced by B in R, then
Si-n-1(B)<s;(B)<s;(B) (j=1,2,...,n). (5.25)

THEOREM 5.8. Suppose that @ is an arbitrary symmetric gauge

function, T,e@&?’, T,€@, that the operators A=T+ T, andB =1+ T,

vanish only at the origin, and that C = AB, Then
{In 5;(C)— Ins; (B)} %% € Ao ({In 5; (4))2)-
PROOF. Since
Ins;(1+ T)=%M(T+T*+T*T)+o(xj(T+T*+T*T)),

for T€S$ we have )
{lns; (I +T)) € 1)

Therefore, by Theorems 4.1 and 4.2, it is sufficient to establish that
1 The finite-dimensional case of Theorem 5,7, together with this method of

deriving it from a theorem on the singular values of the product of two opera-
tors, is indicated by Amir-Moéz ([9], Theorem 3. 12).
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{In s;(C)—In 55 (B)} 2 <& {In s; (A)) 22 (5.26)

{Ins; (B)—In s; (C)} =2 K { —In s; (4)}2, (5.27)

and if TiE@h that
{Ins; (C)—1ns; (B)) 2 < {In s;(4)} . (5.28)

Since B = A™'C and sj(A™") = sJ‘.1 (A (J = 11, 2, ...), (5.27) follows from
(5.26). To prove (5.26) it is sufficient to establish that for any finite
system of indices

< i< = <O<H< 1< o < Ty

we have
-3 C) k41

H s, (B) H (B) H sj (4)- (5.29)

t=1

Represent C and B in polar form: C = UH, B = UH,, where U, U, are
unitary and H, H, positive. It is easy to verify that H - I and H, - I are
completely continuous. Obviously

Aj(H)=s;(C), Mj(H)=s;(B) (j==£1,%£2,...). (5.30)

Without loss of generality we may suppose that to the values
AjH) (j =1, ..., j1) there corresponds an orthonormal system of eigen-
vectors Wj(j = 1, ..., j1) of H, and to the values A.; (H,) (i = 1, ..., ig)
an orthonormal system of eigenvectors ©.;(t =1, ..., i) of H, (this is
established in exactly the same way as the analogous assertion in the proof
of Theorem 5.1). Let IN be the linear hull of the vectors y;(j = 1, ...,j1),
Mt that of the vectors o.; (i = 1, ..., ix), and N a subspace of  of
dimension n = i, + ji containing M and IMi- Denote by U, and U, unitary
operators satisfying the conditions

UHR=R, U0=0¢ (€M)
UaHSR—% U3"-|9='~|J (lPEEIR),
and by ﬁ 2 H1 the operators induced in R by UQH USU*AUlU;, U,H,, res-

pectively. Since UH = U JU*AU,UZUH,, therefore H = Al . Applying (2.11)
to H A and Hl, we obtain

kR B L2
i M{L’ AL H s;(A). (5.31)
b Snaet—iy (B S, (A
By (5.24) and (5.25)
55 (A) <s;(UsU*AU U =5;(4) (j =1, 2, ..., k+ 1), (5.32)
Snrs—i (H)> s (UsH) = s, (H) (i=1, 2, ..., in), (5.33)
si(H) <s;(UaHy)=s;(Hy) (j=1,2, ..., J1). (5.34)

From (5.25), by the choice of the subspace t and the operators U,, U,
it is not difficult to deduce that
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sE) > H) G=1,2, ..., j)s s () <A (H) (=1, 2, ..., &) (5.35)

Inequality (5.29) follows from (5.30 — (5.35).
Thus, to conclude the proof it remains to show that if 7,¢&,, then
(5.28) holds, i.e.

I 5= 1 @

j=— j=—o0

The proof of this relation is basically analogous to that of Lemma
5.1, and therefore we omit it.

Just as Theorem 5.7 is derived from Theorem 5.6, so we can easily
obtain from Theorem 5.8 the following proposition, the infinite-dimensional
analogue of Theorem 2,5.

THEOREM 5.9. Let @ be an arbitrary symmetric gauge function, and
let the operators A = I + Hy and B =T + H, be positive definite, where
H, e and H,€3~. If C=AB, then'

{In}; (C)—1InA; (B)} =% € Ao ({Inh; (A)}%2).

It is obvious that corollaries similar to Corollary 5.1 also hold for
Theorems 5.5, 5.8, and 5.9.

6. with the aid of the methods indicated above, the inequalities for
the eigen- and singular values of matrices established in [9]. [12], (13]
can also be carried over to the infinite-dimensional case. We give as an
example the analogue of one of the theorems of Amir-Mo€éz ([9], Theorem

3.6).
THEOREM 5.10. If A, B€@« and C = A + B, then for any system of
indices
<<l < - <hand/i < Ja<- o <

we have

k k 3
p§1 smay (€)< p§1 sm i) (4) +p§1 Sm (i) (B), (5.36)

where lp =ip+jp-1(p=1, ..., W), and m(ip) is defined by (0.4).

PROOF. We represent C in polar form: C = UH, and denote by %t the sub-
space of § spanned by the eigenvectors of H corresponding to the eigen-
values \j (H) = s;(C) (j = 1, ..., m(lp)). If P is the orthogonal pro-
jector of § onto WM, we put A = PU*A and B, = PU'B. We denote by H, A,,
B respectively. Since H A,B,, by (9] (Theorem 3.6) the inequality (5.36)
is valid for H A1, and Bi, and since

si (@Y =4 (H)=5;C), s;(A)<s;(4), ;(B)<s;(BY(j=1,2, ..., m(ln)),
(5.36) is also valid for C, A, and B. The theorem is proved.
We mention in conclusion that by analyzing the proofs of Theorems 5,6

1 It is easy to see that the eigenvalues of C are positive and tend to 1. We
number those greater than unity in decreasing order by the indices 1 to o, and
those less than unity in increasing order by the indices -1 to -oo,
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and 5.10 one can easily establish the validity of the following general

assertion.
THEOREM 5.11. If for arbitrary matrices A and B of order n we have

k R

s, (A+B)< 3 Isi, (4) +s5,(B)]

p=1 P =1

k k

(respectively H 5, (AB)< H s;_ (A)sj (B)) , where the indices
p=1 P p=1i p p

ip, Jp,» lp (¢ n) are fixed, then this inequality also remains valid for
arbitrary operators A, B € S.

A similar assertion also holds, for example, for an inequality of the
form (0.3) (compare [12]. Theorem 4), but the formulation of complete
analogues of such inequalities for self-adjoint completely continuous
operators is complicated somewhat by the method of enumerating their
eigenvalues.

Received 11th April 1963.
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