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Summary

Summary

In the late 80’s Bazhanov, Kirillov, and Reshetikhin conjectured the dilogarithm
identities for the central charges of the Wess-Zumino-Witten conformal field theories.
We prove the identities and its functional generalizations using cluster algebras.
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Euler dilogarithm (1)

k = 1, 2, 3, . . . (polylogarithm)

Lik(x) =
∞∑

n=1

xn

nk
(converges in |x| < 1)

Li = Logarithmic Integral
k = 1 (logarithm)

Li1(x) =

∞∑

n=1

xn

n
= − log(1− x)

k = 2 (Euler dilogarithm)

Li2(x) =

∞∑

n=1

xn

n2

Integral expression:

Li2(x) = −
∫ x

0

log(1− y)

y
dy

analytically continued to the universal covering of P1 − {0, 1,∞}.
Special values:

Li2(0) = 0, Li2(1) =
∞∑

n=1

1

n2
= ζ(2) =

π2

6
(Euler)
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Euler dilogarithm (2)

Li2(x) =
∞∑

n=1

xn

n2
= −

∫ x

0

log(1− y)

y
dy.

The function Li2(x) looks boring.

However,

“Almost all of its appearances in mathematics, and almost all the formulas
relating to it, have something of the fantastical in them, as if this function
alone among all others possessed a sense of humor.” — Don Zagier (1988)
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Rogers dilogarithm

Rogers dilogarithm function L(x) (0 ≤ x ≤ 1)

L(x) = −1

2

∫ x

0

{
log(1− y)

y
+

log y

1− y

}

dy = Li2(x) +
1

2
log x log(1− x)

Again, L(0) = 0, L(1) =
π2

6
(very important!)

Once again, the function looks boring (almost linear!).

Only few special values are known, e.g.,

6

π2
L

(
1

2

)

=
1

2
,

6

π2
L

(

−
√
5 + 3

2

)

=
2

5
,

6

π2
L

(√
5− 1

2

)

=
3

5
.

Functional relation (1) (Euler) L(x) + L(1− x) =
π2

6
.

Functional relation (2) (Abel, 5-term/pentagon relation)

L(x) + L(y) + L(1− xy) + L

(
1− x

1− xy

)

+ L

(
1− y

1− xy

)

=
π2

2
= 3

π2

6
.
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Dilogarithm identities in conformal field theories

X: any Dynkin diagram of Ar , Dr , E6, E7, or E8 with index set I
ℓ ≥ 2: any integer
constant Y-system: {Y (a)

m | a ∈ I; 1 ≤ m ≤ ℓ− 1}: a family of positive real numbers

(Y
(a)
m )2 =

∏

b:b∼a

(1 + Y
(b)
m )

(1 + Y
(a)
m−1

−1)(1 + Y
(a)
m+1

−1)
, (cY)

b ∼ a: b is adjacent to a in X, Y (a)
0

−1 = Y
(a)
ℓ

−1 = 0.
There exists a unique positive real solution of (cY). [Nahm-Keegan 09]

Conjecture 1 (Dilogarithm identities) [Bazhanov, Kirillov, Reshetikhin, 86–90]

For the unique positive real solution {Y (a)
m | a ∈ I; 1 ≤ m ≤ ℓ− 1} of (cY),

6

π2

∑

(a,m)

L

(
Y

(a)
m

1 + Y
(a)
m

)

=
ℓdim g

h+ ℓ
− r,

h: Coxeter number of X, g: simple Lie algebra of type X, r: rank of X.

(asymptotic of entropy of spin chains/S-matrix models) = (central charge of CFT)
Proved for X = Ar [Kirillov 90].
Related to Rogers-Ramanujan-type identities, KR modules, hyperbolic 3-folds, etc.
Turned out that it is not an easy problem.
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Functional dilogarithm identities

Y-system: [Zamolodchikov 91, Kuniba-Nakanishi 92, Ravanini-Tateo-Valleriani 93]
(X,X′): any pair of Dynkin diagrams Ar , Dr , E6, E7, or E8

{Yii′ (u) | i ∈ I, i′ ∈ I′, u ∈ Z}: a family of variables

Yii′ (u− 1)Yii′ (u+ 1) =

∏

j:j∼i

(1 + Yji′ (u))

∏

j′:j′∼i′

(1 + Yij′ (u)
−1)

, (Y)

where j ∼ i: j is adjacent to i in X, j′ ∼ i′: j′ is adjacent to i′ in X′.

Conjecture 2 (Periodicity) [Ravanini-Tateo-Valleriani 93]

For {Yii′ (u) | i ∈ I, i′ ∈ I′, u ∈ Z} satisfying (Y),

Yii′ (u+ 2(h+ h′)) = Yii′ (u), h : Coxeter number of X.

Conjecture 3 (Functional dilogarithm identities) [Gliozzi-Tateo 95]

For any family of positive real numbers {Yaa′ (u) | a ∈ I, a′ ∈ I′, u ∈ Z} satisfying (Y),
6

π2

∑

(i,i′)∈I×I′

∑

0≤u<2(h+h′)

L

(
Yii′ (u)

1 + Yii′ (u)

)

= 2hrr′, r = rankX.

Conj. 3 =⇒ Conj. 1; set X′ = Aℓ−1, take a constant solution Yii′ = Yii′ (u).
The simplest case X = X′ = A1: Euler’s identity.
The next simplest case X = A2, X′ = A1: Abel’s identity.
Conj. 1, 2, and 3 are only partially proved in B.C. (=Before Cluster algebra [2000]) 9 / 26
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Main result

Known results on Conjectures 2 and 3:

Who and When Periodicity Funct.Dilog.Id. Method
Gliozzi-Tateo 95 (Ar, A1) (Ar, A1) explicit solution

Frenkel-Szenes 95 (Ar, A1) (Ar, A1) explicit solution
constancy condition (1)

Fomin-Zelevinsky 00∼ cluster algebra
Fomin-Zelevinsky 03 (any, A1) cluster algebra-like setting (2)

Coxeter transformation
Chapoton 05 (any, A1) (1) + (2)

evaluation at 0/∞ limit
Szenes 06 (Ar, Ar′ ) flat connection on graph
Volkov 06 explicit solution
Fomin-Zelevinsky 07 cluster algebra / coefficients (3)

F-polynomials (4)
Keller 08 (any, any) (3)+(4)

cluster category
Auslander-Reiten theory

Using these ideas, methods, and results, we obtain the following theorem.

Theorem [N 09]

Conjecture 3 is true for any X and X′.
10 / 26
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Constancy condition (1)

I: any open or closed interval in R

C = C(I) := {f | f : I → R+, differentiable}, a multiplicative abelian group
C⊗Z C: the additive abelian group with generator f ⊗ g (f, g ∈ C) and relation

(fg)⊗ h = f ⊗ h+ g ⊗ h, f ⊗ (gh) = f ⊗ g + f ⊗ h

(=⇒ 1⊗ h = h⊗ 1 = 0, f−1 ⊗ h = f ⊗ h−1 = −f ⊗ h)

S2C: subgroup of C⊗Z C generated by f ⊗ f (f ∈ C)
∧2

C := C⊗Z C/S2C (write f ⊗ g as f ∧ g)

Theorem [Frenkel-Szenes 95]

Let f1(t), . . . , fn(t) be differentiable functions from I to (0, 1). Suppose that they
satisfy the following relation in

∧2
C:

n∑

i=1

fi ∧ (1− fi) = 0 (constancy condition)

Then, the dilogarithm sum
∑n

i=1 L(fi(t)) is constant with respect to t ∈ I.

Proof. The proof of [FS95] is surprisingly simple.

dL(x) = −1

2

{
log(1− x)

x
+

log x

1− x

}

dx

= −1

2
{log(1− x)d log x− log xd log(1− x)} . (proof continued)

12 / 26
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Constancy condition (2)

d
n∑

i=1

L(fi(t)) = −1

2

n∑

i=1

{log(1− fi(t))d log fi(t)− log fi(t)d log(1− fi(t))} .

By assumption,

n∑

i=1

fi ⊗ (1− fi) =
k∑

i=1

nigi ⊗ gi for some ni ∈ Z and gi,∈ C.

For any t, s ∈ I, we have an additive group homomorphism C⊗Z C → R,
f ⊗ g 7→ log f(t) log g(s). Therefore,

n∑

i=1

log fi(t) log(1− fi(s)) =
k∑

i=1

ni log gi(t) log gi(s).

Taking the derivative for t and s and setting s = t,
n∑

i=1

d log fi(t) · log(1− fi(t)) =

k∑

i=1

nid log gi(t) · log gi(t),

n∑

i=1

log fi(t) · d log(1− fi(t)) =
k∑

i=1

ni log gi(t) · d log gi(t).

Therefore, we have d
∑n

i=1 L(fi(t)) = 0. �

13 / 26
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Examples

Example 1. (Euler’s identity) Take any f : I → (0, 1).

f1 = f, f2 = 1− f,

2∑

i=1

fi ∧ (1− fi) = f ∧ (1− f) + (1− f) ∧ f = 0.

Example 2. (Abel’s identity) Take any f, g : I → (0, 1).

f1 = f, f2 = g, f3 = 1− fg, f4 =
1− f

1− fg
, f5 =

1− g

1− fg
.

5∑

i=1

fi ∧ (1− fi) = 0.

Another form of constancy condition: Set fi =
yi

1 + yi
(yi : I → R+).

fi ∧ (1− fi) =
1

1 + yi
∧ 1

1 + yi
= −yi ∧ (1 + yi).

Constancy condition:
∑

i

yi ∧ (1 + yi) = 0.

Q: How to find a set of functions {yi} satisfying the constancy condition?
A: Cluster algebras give such functions.

14 / 26
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Cluster algebra with coefficients

triplet (B, x, y) (initial seed)
B: skew symmetric matrix B = (Bij)i,j∈I (mutation matrix)
x: I-tuple of formal variables x = (xi)i∈I (cluster)
y: I-tuple of formal variables y = (yi)i∈I (coefficient tuple)
Mutation of (B, x, y) at k ∈ I: (B′, x′, y′) = µk(B, x, y)

B′
ij =

{

−Bij i = k or j = k,

Bij + 1
2
(|Bik|Bkj +Bik|Bkj |) otherwise.

y′i =







yk
−1 i = k,

yi

(
1

1⊕ yk−1

)Bki

i 6= k, Bki ≥ 0,

yi(1⊕ yk)
−Bki i 6= k, Bki ≤ 0.

x′
i =







yk
∏

j:Bjk>0 x
Bjk

j +
∏

j:Bjk<0 x
−Bjk

j

(1⊕ yk)xk

i = k,

xi i 6= k.

The mutation is involutive, i.e., µk(B
′, x′, y′) = (B, x, y).

Repeat mutation and collect all the seeds (B′′, x′′, y′′).
The cluster algebra A(B, x, y) is a ring generated by all x′′

i (cluster variables).
Skew symmetric matrix B ↔ quiver Q (with no loop and 2-cycle)

Bij = t > 0 ↔ -
i j

t

16 / 26
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F polynomials, C matrix, and G matrix

I = {1, . . . , n}: index set for A(B, x, y)

Theorem [FZ07]

For each seed (B′, x′, y′), there exist some

F ′
i (y1, . . . , yn) (i ∈ I) polynomial of y

C′ = (c′ij)i,j∈I integer matrix

G′ = (g′ij)i,j∈I integer matrix

such that

y′i =




∏

j∈I

y
c′ji
j




∏

j∈I

F ′
j(y1, . . . , yn)

B′
jo ,

x′
i =




∏

j∈I

y
g′ji
j




F ′
j(ŷ1, . . . , ŷn)

B′
ji

F ′
j(y1, . . . , yn)

B′
ji

, ŷi = yi
∏

j∈I

x
Bji

j .

Proposition [Derksen-Weyman-Zelevinsky 10, Plamondon 10, Nagao 10]
(a) Fi(y) has the constant term 1.
(b) For each i, (c′ji)j∈I > 0 or (c′ji)j∈I < 0

In other other words, y′i has the Laurent expansion in y with either positive or negative
degree.

17 / 26



Dilogarithm (10 min) Dilogarithm Identities in CFT (10) Constancy condition (10) Cluster Algebras (10) Proof of Main Theorem (15) Remarks (5)

Constancy condition in cluster algebras

⋆ Local verion of constancy condition (following the idea of [Fock-Goncharov 09]).
Let (B′, x′, y′) and (B′′, x′′, y′′) be any seeds such that (B′′, x′′, y′′) = µk(B

′, x′, y′).
For each seed (B′, x′, y′), we set

W ′ =
∑

i∈I

F ′
i ∧ y′i +

1

2

∑

i∈I

B′
ijF

′
i ∧ F ′

j ∈
∧

2
Puniv(y)

Proposition (Local constancy condition [N 10]; cf. [Fock-Goncharov 09])

W ′′ −W ′ = y′k ∧ (1 + y′k).

⋆ Suppose that an I-sequence i = (i1, . . . , iΩ) is a period of a seed (B, x, y); namely,

(B(0), x(0), y(0)) := (B, x, y)
µi1↔ (B(1), x(1), y(1))

µi2↔

· · ·
µiΩ↔ (B(Ω), x(Ω), y(Ω)) = (B(0), x(0), y(0))

Proposition (Constancy condition [N 10])
∑

(u,i)

yi(u) ∧ (1 + yi(u)) = 0.

(the sum is take over the forward mutation points)

(Local constancy) + (Periodicity) =⇒ (Constancy condition) =⇒ (dilogarithm identity)
and ‘Dilogarithm identities in CFT’ are special cases of this.

18 / 26
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Formulation of Y-system by cluster algebra

⋆ Roughly speaking,
cluster algebra

Y-system coefficients yi
T-system cluster variables xi

⋆ Example. Y-system for (X,X′) = (A3, A2).

6
?

6

� -

- �

: forward mutation points

+ − +

− + −

Q

µ+↔
?

6
?- �

� -

+ − +

− + −

Qop

µ−↔
6

?
6

� -

- �

Q

+ − +

− + −

Set y(0) := y, and repeat the mutations µ+ and µ− alternatively:

· · ·
µ+↔ (Qop, y(−1))

µ−↔ (Q, y(0))
µ+↔ (Qop, y(1))

µ−↔ (Q, y(2))
µ+↔ · · ·

Then, {yii′ (u)’s at ◦} satisfy the Y-system. e.g., y11(0)y11(2) =
1 + y21(1)

1 + y12(1)−1
.

6
?

6

� -

- �

+ − +

− + −

y11(0) y21(0) y31(0)

y12(0) y22(0) y32(0)

µ+↔
?

6
?- �

� -

y11(2) = y11(1)
1 + y21(1)

1 + y−1
12 (1)

+ − +

− + −

y11(1) y21(1) y31(1)

y12(1) y22(1) y32(1)

y11(1) = y11(0)−1

µ−↔
6

?
6

� -

- �

+ − +

− + −

y11(2) y21(2) y31(2)

y12(2) y22(2) y32(2)

µ+↔

20 / 26
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Outline of proof

We want to show the identity.

6

π2

∑

(i,i′)∈I×I′

∑

0≤u<2(h+h′)

L

(
Yii′ (u)

1 + Yii′ (u)

)

= 2hrr′, r = rankX. (FDI)

Step 1. Formulate the Y-system (Y) by cluster algebra with coefficients A(Q, x, y),
where Q is some quiver. [Keller 08]

{yii′ (u)’s at ◦} satisfy the Y-system.
yii′ (u)’s are subtraction-free rational functions of initial coefficients yii′ with
positive or negative degree. [Derksen-Weyman-Zelevinsky 10, Plamondon 10,
Nagao 10]

Step 2. Show the periodicity: yii′ (u+ 2(h+ h′)) = yii′ (u) [Keller 08]
Then, consistency condition of LHS of (FDI) automatically follows.

∑

(i,i′)∈I×I′

0≤u<2(h+h′)

yii′ (u) ∧ 1 + yii′ (u) = 0.

Step 3. Evaluate the LHS of (FDI) in the ‘0/∞ limit’. [Chapoton 05]

6

π2
L

(
Y

1 + Y

)

=

{

0 Y → 0

1 Y → +∞.

Take the limit yii′ → 0. Then, each Yii′ (u) goes either 0 or +∞. Therefore,

LHS of (FDI) = 2×#{yii′ (u)’s at ◦ in 0 ≤ u < 2(h+ h′) with negative degree}
Count the above number explicitly using the tropical Y-system. 21 / 26
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Tropical Y-system

Tropical Y-system: Replace ‘+ ’ by tropical ‘⊕’ for Laurent polynomials (monomials) of
initial coefficient tuple y = y(0).

∏

i,i′

y
aii′

ii′
⊕
∏

i,i′

y
bii′

ii′
=
∏

i,i′

y
min(aii′ ,bii′ )

ii′
.

Example (continued) (X,X′) = (A3, A2)

6
?

6

� -

- �

(Q, y(0))

+ − +

− + −

y11 y21 y31

y12 y22 y32

µ+↔
?

6
?- �

� -

y11(1) = y−1
11 , y22(1) = y−1

22 , y31(1) = y−1
31 ,

y12(1) = y12
1⊕ y22

1⊕ y−1
11

= y11y12,

y21(1) = y21
(1⊕ y11)(1⊕ y31)

1⊕ y−1
22

= y21y22,

y32(1) = y32
1⊕ y22

1⊕ y−1
31

= y31y32,

(Qop, y(1))

+ − +

− + −

y11(1) y21(1) y31(1)

y12(1) y22(1) y32(1)

22 / 26
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Evaluation of dilogarithm sum by tropical Y-system

Example (continued) (X,X′) = (A3, A2). h = 4, h′ = 3, r = 3, r′ = 2.
Fact: There is the half periodicity yii′ (u+ h+ h′) = y4−i,3−i′ (u). (h+ h′ = 7).
Let us show

#{yii′ (u)’s at ◦ with negative degree in 0 ≤ u < h+ h′} =
1

2
hrr′ =

1

2
· 4 · 3 · 2 = 12.

0 0-1
0 0 0

6

- 0-10
0 0 0

?

�-10 0
0 0 0

6
0 0 0
0 0-1�

0 0 0
0-10-

0 0 0
-10 0

y(−4)

0-1-1
0 0 0

?
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0 0 0
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?
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0 0 1
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6
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0 0 0

?
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0 0 0

6
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-1-10�

0 0 0
1 1 1

- 0 0 0
0-1-1

y(−2)

↔µ−

-10 0
0 0 0

?

�1 1 1
0 0 0

6

- 0 0-1
0 0 0

?
0 0 0
1 1 0

- 0 0 0
0-10�

0 0 0
0 1 1

y(−1)

↔µ+

100
0 0 0

6

- 0 1 0
0 0 0

?

�0 0 1
0 0 0

6
0 0 0
1 0 0

�0 0 0
0 1 0

- 0 0 0
0 0 1

y(0)

↔µ−

1 0 0
1 0 0

?

�0-10
0 0 0

6

- 0 0 1
0 0 1

?
0 0 0
-10 0

- 0 1 0
0 1 0

�0 0 0
0 0-1

y(1)

↔µ+

-10 0
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6

- 0 0 0
0 1 0

?

�0 0-1
0 0-1

6
1 0 0
0 0 0

�0-10
0-10-

0 0 1
0 0 0

y(2)

↔µ−

0 0 0
-10 0

?

�0 0 0
0-10

6

- 0 0 0
0 0-1
?

-10 0
0 0 0

- 0-10
0 0 0

�0 0-1
0 0 0

y(3)

↔µ+

︸ ︷︷ ︸

h′=3

︸ ︷︷ ︸

h=4

negative in −h ≤ u < 0, positive in 0 ≤ u < h′ ‘factorization property’
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More periodicity in cluster algebras

One can associate a dilogarithm identity for any periodicity in cluster algebra
[Nakanishi 10]
Example 1. The Y-system for nonsimply laced WZW models. X = B5, ℓ = 4.
[Inoue-Iyama-Keller-Kuniba-Nakanishi 10]
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Q = µ•
−µ◦

−µ•
+µ•

−µ◦
+µ•

+(Q) = Q

(Q, x, y): initial seed

Periodicity: (µ•
−µ◦

−µ•
+µ•

−µ◦
+µ•

+)13(Q, x, y) = (Q, x, y), 13 = 9 + 4 = h∨(B5) + ℓ.
Example 2. The Y-system for sine-Gordon models. n = 7. [Nakanishi-Tateo 10]
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]R
−

+

−

+
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++

Q1 Q2 Q3 Q4 Q5 Q6

1 2 3 4 5 6

All the vertices • in the same position in the quivers Q1,. . . ,Q6 are identified.
Periodicity: (µ•

−µ6µ•
+ · · ·µ•

−µ2µ•
+µ•

−µ1µ•
+)13(Q, x, y) = (Q, x, y).

13 = (12 + 2 + 10 + 2)/2 = (h(D7) + 2 + h(D6) + 2)/2.
And these examples should be a tip of iceberg.
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Points of further interest

Points of further interest:

polylogarithm

quantization (Kashaev, Fock-Goncharov, Kontsevich-Soibelman,
Cecotti-Neitzke-Vafa, ...)

2d and 3d hyperbolic geometry (Kashaev, Fock-Goncharov,
Gekhtman-Shapiro-Veinstein, Fomin-Shapiro-Thurston, Bridgeman, ...)

“The function is so shy that cluster algebraic nature is hidden under the mask
of integral.” — Anonymous (2010)
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